Energy, exergy and economic analyses of a novel hybrid ocean thermal energy conversion system for clean power production

被引:57
|
作者
Yilmaz, Fatih [1 ]
机构
[1] Aksaray Univ, Vocat Sch Tech Sci, TR-68100 Aksaray, Turkey
基金
美国国家航空航天局;
关键词
Energy; Exergy; Economic assessment; OTEC; Wind; PERFORMANCE ASSESSMENT; SOLAR; OPTIMIZATION; CYCLE; DESIGN; WIND;
D O I
10.1016/j.enconman.2019.06.028
中图分类号
O414.1 [热力学];
学科分类号
摘要
In this study, comprehensive thermodynamic performance and economic evaluation of the ocean thermal energy conversion (OTEC) and wind turbine combined hybrid plant is investigated. The proposed system consists of the two main sub-cycles, which are isobutene working fluid ocean thermal energy conversion system and wind turbine. The proposed study is projected to meet the daily total electrical power demands for a petrol station on the edge of the Mediterranean Sea in Turkey (Antalya). Energetic, exergetic performances and total irreversibility as well as economic assessment of the whole plant and its components are investigated according to various factors for example dead state temperature, turbine isentropic efficiency and inlet pressure of turbine. The results obtained by calculating the effects of these parameters on the ocean thermal energy conversion - wind plant performance (energy and exergy efficiency) are presented in graphs. According to the results, the total energy and exergy efficiencies of the ocean thermal energy conversion plant are 4.49% and 14.84%, respectively. Also, the overall energy and exergy efficiency of the hybrid system are 12.27% and 23.34%, respectively. In addition, the total exergy destruction rate of the modelled plant is 2168.405 kW, and the heat exchanger has maximum exergy destruction ratio with 44.77%. Finally, the total cost of the proposed hybrid study is found as 3.03 $/hr.
引用
收藏
页码:557 / 566
页数:10
相关论文
共 50 条
  • [1] Energy and exergy analyses of hydrogen production via solar-boosted ocean thermal energy conversion and PEM electrolysis
    Ahmadi, Pouria
    Dincer, Ibrahim
    Rosen, Marc A.
    INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2013, 38 (04) : 1795 - 1805
  • [2] Energy and exergy analyses of thermal power plants: A review
    Kaushik, S. C.
    Reddy, V. Siva
    Tyagi, S. K.
    RENEWABLE & SUSTAINABLE ENERGY REVIEWS, 2011, 15 (04): : 1857 - 1872
  • [3] Energy and exergy analyses of integrated hybrid sulfur isobutane system for hydrogen production
    Ratlamwala, T. A. H.
    Dincer, I.
    Naterer, G. F.
    INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2012, 37 (23) : 18050 - 18060
  • [4] Energy and exergy analyses of a novel photoelectrochemical hydrogen production system
    Acar, Canan
    Dincer, Ibrahim
    INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2017, 42 (52) : 30550 - 30558
  • [5] Energy and exergy analyses of a solar based hydrogen production and compression system
    Ozcan, Hasan
    Dincer, Ibrahim
    INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2017, 42 (33) : 21414 - 21428
  • [6] Energy, exergy, economic analysis and optimization of polygeneration hybrid solar-biomass system
    Sahoo, U.
    Kumar, R.
    Singh, S. K.
    Tripathi, A. K.
    APPLIED THERMAL ENGINEERING, 2018, 145 : 685 - 692
  • [7] Proposal of a novel integrated ocean thermal energy conversion system with flat plate solar collectors and thermoelectric generators: Energy, exergy and environmental analyses
    Khanmohammadi, Shoaib
    Baseri, Mohammad Mehdi
    Ahmadi, Pouria
    Al-Rashed, Abdullah A. A. A.
    Afrand, Masoud
    JOURNAL OF CLEANER PRODUCTION, 2020, 256
  • [8] Thermodynamic and economic analysis of a hybrid ocean thermal energy conversion/photovoltaic system with hydrogen-based energy storage system
    Khosravi, A.
    Syri, Sanna
    Assad, M. E. H.
    Malekan, M.
    ENERGY, 2019, 172 : 304 - 319
  • [9] 3 E (Energy, Exergy and Economic) multi-objective optimization of a novel solar-assisted ocean thermal energy conversion system for integrated electricity and cooling production
    Rami, Yassine
    Allouhi, Amine
    ENERGY CONVERSION AND MANAGEMENT, 2024, 321
  • [10] Energy, exergy, and economic analyses of a novel liquid air and pumped thermal combined energy storage system
    Li, Junxian
    Wang, Zhikang
    Li, Yihong
    Wei, Guqiang
    Ji, Wei
    Fan, Xiaoyu
    Gao, Zhaozhao
    Chen, Liubiao
    Wang, Junjie
    ENERGY CONVERSION AND MANAGEMENT, 2025, 330