Group analysis of the time fractional generalized diffusion equation

被引:16
作者
Lashkarian, Elham [1 ]
Hejazi, S. Reza [1 ]
机构
[1] Shahrood Univ Technol, Dept Math Sci, Shahrood, Semnan, Iran
关键词
Lie symmetry; Fractional derivatives; Erdelyi-Kober operators; Optimal system; DIFFERENTIAL-EQUATIONS; ORDER;
D O I
10.1016/j.physa.2017.02.062
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
This paper is concerned with the time fractional derivatives (Riemann-Liouville) of non-linear anomalous diffusion equation. Using Lie symmetry method, we show this equation can be reduced to Erdelyi-Kober fractional derivatives type. Then all of the symmetry vector fields and some exact solutions of our time fractional non-linear equation are obtained. (C) 2017 Elsevier B.V. All rights reserved.
引用
收藏
页码:572 / 579
页数:8
相关论文
共 20 条
[1]   Approximate analytical solution to fractional modified KdV equations [J].
Abdulaziz, O. ;
Hashim, I. ;
Ismail, E. S. .
MATHEMATICAL AND COMPUTER MODELLING, 2009, 49 (1-2) :136-145
[2]   Invariance of a partial differential equation of fractional order under the Lie group of scaling transformations [J].
Buckwar, E ;
Luchko, Y .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 1998, 227 (01) :81-97
[3]  
Debnath L., 2003, Int. J. Math. Math. Sci, V2003, P3413
[4]   Solving systems of fractional differential equations using differential transform method [J].
Erturk, Vedat Suat ;
Momani, Shaher .
JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2008, 215 (01) :142-151
[5]  
Galaktionov VA., 2007, Exact solutions and invariant subspaces of nonlinear partial differential equations in mechanics and physics
[6]   Construction of exact solutions for fractional order differential equations by the invariant subspace method [J].
Gazizov, R. K. ;
Kasatkin, A. A. .
COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2013, 66 (05) :576-584
[7]  
Gazizov RK, 2007, Vestnik USATU, V9, P125, DOI DOI 10.1088/0031-8949/2009/T136/014016
[8]  
Godlewski E., 1996, Numerical Approximation of Hyperbolic Systems of Conservation Laws, V118
[9]  
Ibragimov N. H., 1985, TRANSFORMATION GROUP
[10]  
Kilbas A A., 2006, N HOLLAND MATH STUDI