The complexity of decentralized control of Markov decision processes

被引:580
作者
Bernstein, DS [1 ]
Givan, R
Immerman, N
Zilberstein, S
机构
[1] Univ Massachusetts, Dept Comp Sci, Amherst, MA 01003 USA
[2] Purdue Univ, Sch Elect & Comp Engn, W Lafayette, IN 47907 USA
关键词
computational complexity; Markov decision process; decentralized control;
D O I
10.1287/moor.27.4.819.297
中图分类号
C93 [管理学]; O22 [运筹学];
学科分类号
070105 ; 12 ; 1201 ; 1202 ; 120202 ;
摘要
We consider decentralized control of Markov decision processes and give complexity bounds on the worst-case running time for algorithms that find optimal solutions. Generalizations of both the fully observable case and the partially observable case that allow for decentralized control are described. For even two agents, the finite-horizon problems corresponding to both of these models are hard for nondeterministic exponential time. These complexity results illustrate a fundamental difference between centralized and decentralized control of Markov decision processes. In contrast to the problems involving centralized control, the problems we consider provably do not admit polynomial-time algorithms. Furthermore, assuming EXP not equal NEXP, the problems require superexponential time to solve in the worst case.
引用
收藏
页码:819 / 840
页数:22
相关论文
共 24 条
[1]  
ALTMAN E, 2001, MARKOV DECISION PROC
[2]  
Babai L., 1991, Computational Complexity, V1, P3, DOI 10.1007/BF01200056
[3]   A survey of computational complexity results in systems and control [J].
Blondel, VD ;
Tsitsiklis, JN .
AUTOMATICA, 2000, 36 (09) :1249-1274
[4]  
Cassandra AR, 1997, P 13 C UNC ART INT A, P54
[5]  
CORADESCHI S, 2000, AI MAG, V21, P11
[6]  
HANSEN EA, 1998, P 14 C UNC ART INT, P211
[7]  
HSU K, 1982, IEEE T AUTOMAT CONTR, V27, P426, DOI 10.1109/TAC.1982.1102924
[8]  
Jaakkola T., 1995, Advances in Neural Information Processing Systems 7, P345
[9]   Planning and acting in partially observable stochastic domains [J].
Kaelbling, LP ;
Littman, ML ;
Cassandra, AR .
ARTIFICIAL INTELLIGENCE, 1998, 101 (1-2) :99-134
[10]  
Lilly D., P 19 ANN S FDN COMP, P35