Multirotor wind turbine wakes

被引:46
|
作者
Bastankhah, Majid [1 ]
Abkar, Mahdi [2 ]
机构
[1] Univ Durham, Dept Engn, Durham DH1 3LE, England
[2] Aarhus Univ, Dept Engn, DK-8000 Aarhus C, Denmark
关键词
POWER LOSSES; FLOW; EFFICIENCY; MOMENTUM; OUTPUT; FARMS; ARRAY; MODEL;
D O I
10.1063/1.5097285
中图分类号
O3 [力学];
学科分类号
08 ; 0801 ;
摘要
To fulfill the increasing need for large power generation by wind turbines, the concept of multirotor wind turbines has recently received attention as a promising alternative to conventional massive single-rotor wind turbines. To shed light on the viability of this concept, large-eddy simulation is employed in this study to compare wake flow properties of a multirotor wind turbine with those of a single-rotor turbine. The wake of a multirotor turbine is found to recover faster at short downwind distances, where the whole wake is characterized as an array of localized high velocity-deficit regions associated with each rotor. However, as the wake moves downstream, rotor wakes start interacting with each other until they eventually form a single wake. This transition from a wake array to a single wake adversely affects the initial fast recovery of multirotor turbine wakes. A budget analysis of mean kinetic energy is performed to analyze the energy transport into the wake before and after this transition. In addition, the effect of different geometrical configurations on wake characteristics of a multirotor turbine was examined. We found that the recovery rate of multirotor turbine wakes is enhanced by the increase in rotor spacing, whereas the number and rotation direction of rotors do not play a significant role in the wake recovery. A simple analytical relationship is also developed to predict the streamwise distance at which the transition from a wake array to a single wake occurs for multirotor wind turbines. Published under license by AIP Publishing.
引用
收藏
页数:17
相关论文
共 50 条
  • [1] Wind turbine wakes on escarpments: A wind-tunnel study
    Dar, Arslan Salim
    Porte-Agel, Fernando
    RENEWABLE ENERGY, 2022, 181 : 1258 - 1275
  • [2] Investigation of Multiblade Wind-Turbine Wakes in Turbulent Boundary Layer
    Wu, Yu-Ting
    Lin, Chang-Yu
    Huang, Chien-En
    Lyu, Shao-Dong
    JOURNAL OF ENERGY ENGINEERING, 2019, 145 (06)
  • [3] Meteorological Controls on Wind Turbine Wakes
    Barthelmie, Rebecca J.
    Hansen, Kurt S.
    Pryor, Sara C.
    PROCEEDINGS OF THE IEEE, 2013, 101 (04) : 1010 - 1019
  • [4] Wind Turbine Wakes in Directionally Varying Wind Shears
    Abkar, Mahdi
    Porte-Agel, Fernando
    Sorensen, Jens N.
    PROGRESS IN TURBULENCE VIII, 2019, 226 : 311 - 316
  • [5] Coalescing Wind Turbine Wakes
    Lee, S.
    Churchfield, M.
    Sirnivas, S.
    Moriarty, P.
    Nielsen, F. G.
    Skaare, B.
    Byklum, E.
    WAKE CONFERENCE 2015, 2015, 625
  • [6] The characteristics of helically deflected wind turbine wakes
    Korb, H.
    Asmuth, H.
    Ivanell, S.
    JOURNAL OF FLUID MECHANICS, 2023, 965
  • [7] Large Eddy Simulation of Wind Turbine Wakes
    Chatelain, Philippe
    Backaert, Stephane
    Winckelmans, Gregoire
    Kern, Stefan
    FLOW TURBULENCE AND COMBUSTION, 2013, 91 (03) : 587 - 605
  • [8] Effects of yaw on the wakes evolution of a wind turbine in wind tunnel
    Zhang, Lidong
    Tie, Hao
    Zhao, Yuze
    Liu, Huiwen
    Tian, Wenxin
    Zhao, Xiuyong
    Chang, Zihan
    Li, Qinwei
    RENEWABLE ENERGY, 2025, 245
  • [9] Numerical simulation and model prediction of complex wind-turbine wakes
    Song, Yi-Lei
    Tian, Lin-Lin
    Zhao, Ning
    JOURNAL OF THE CHINESE INSTITUTE OF ENGINEERS, 2021, 44 (07) : 627 - 636
  • [10] UNDERSTANDING THE INFLUENCE OF TURBINE GEOMETRY AND ATMOSPHERIC TURBULENCE ON WIND TURBINE WAKES
    Gu, Ping
    Kuo, Jim Y. J.
    Romero, David A.
    Amon, Cristina H.
    PROCEEDINGS OF THE ASME INTERNATIONAL MECHANICAL ENGINEERING CONGRESS AND EXPOSITION, 2016, VOL. 6B, 2017,