Moderate deviations and functional limits for random processes with stationary and independent increments

被引:4
作者
Gao Fuqing [1 ]
机构
[1] Wuhan Univ, Sch Math & Stat, Wuhan 430072, Peoples R China
来源
SCIENCE IN CHINA SERIES A-MATHEMATICS | 2006年 / 49卷 / 12期
基金
中国国家自然科学基金;
关键词
moderate deviations; large deviations; functional limits; processes with independent increment;
D O I
10.1007/s11425-006-2018-0
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We first give a functional moderate deviation principle for random processes with stationary and independent increments under the Lecloux's condition. Then we apply the result to the functional limits for increments of the processes and obtain some Csorgo-Revesz type functional laws of the iterated logarithm.
引用
收藏
页码:1753 / 1767
页数:15
相关论文
共 21 条
[1]  
BALDI P, 1990, LECT NOTES MATH, V1444, P193
[2]  
BOROVKOV AA, 1978, SIBERIAN MATH J+, V19, P697
[3]   The functional moderate deviations for Harris recurrent Markov chains and applications [J].
Chen, X ;
Guillin, A .
ANNALES DE L INSTITUT HENRI POINCARE-PROBABILITES ET STATISTIQUES, 2004, 40 (01) :89-124
[4]  
Chen X., 1991, CHINESE J APPL PROBA, V7, P24
[5]  
Csorgo M., 1981, Probability and Mathematical Statistics: a series of monographs and textbooks
[6]  
Dawson D. A., 1987, Stochastics, V20, P247, DOI 10.1080/17442508708833446
[7]   SMALL DEVIATIONS IN THE FUNCTIONAL CENTRAL LIMIT-THEOREM WITH APPLICATIONS TO FUNCTIONAL LAWS OF THE ITERATED LOGARITHM [J].
DEACOSTA, A .
ANNALS OF PROBABILITY, 1983, 11 (01) :78-101
[8]  
Dembo A., 2010, Large Deviations Techniques and Applications
[9]  
Deuschel J. D., 1989, LARGE DEVIATIONS
[10]   The rate of convergence in the functional limit theorem for increments of a Brownian motion [J].
Gao, FQ ;
Wang, QH .
STATISTICS & PROBABILITY LETTERS, 2005, 73 (02) :165-177