CONVERGENCE OF A NONLINEAR ENTROPY DIMINISHING CONTROL VOLUME FINITE ELEMENT SCHEME FOR SOLVING ANISOTROPIC DEGENERATE PARABOLIC EQUATIONS

被引:42
作者
Cances, Clement [1 ,2 ]
Guichard, Cindy [1 ,2 ,3 ,4 ]
机构
[1] Univ Paris 06, Sorbonne Univ, UMR 7598, Lab Jacques Louis Lions, F-75005 Paris, France
[2] CNRS, UMR 7598, Lab Jacques Louis Lions, F-75005 Paris, France
[3] Inria, ANGE Project Team, Rocquencourt BP 105, F-78153 Le Chesnay, France
[4] CEREMA, ANGE Project Team, 134 Rue Beauvais, F-60280 Margny Les Compiegne, France
关键词
APPROXIMATE SOLUTIONS; 2-PHASE FLOWS;
D O I
10.1090/mcom/2997
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we propose and analyze a Control Volume Finite Elements (CVFE) scheme for solving possibly degenerated parabolic equations. This scheme does not require the introduction of the so-called Kirchhoff transform in its definition. We prove that the discrete solution obtained via the scheme remains in the physical range, and that the natural entropy of the problem decreases with time. The convergence of the method is proved as the discretization steps tend to 0. Finally, numerical examples illustrate the efficiency of the method.
引用
收藏
页码:549 / 580
页数:32
相关论文
共 44 条
[1]   An optimal Poincare inequality in L1 for convex domains [J].
Acosta, G ;
Durán, RG .
PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2004, 132 (01) :195-202
[2]  
ALT HW, 1983, MATH Z, V183, P311
[3]   A finite volume method on general meshes for a degenerate parabolic convection-reaction-diffusion equation [J].
Angelini, Ophelie ;
Brenner, Konstantin ;
Hilhorst, Danielle .
NUMERISCHE MATHEMATIK, 2013, 123 (02) :219-257
[4]  
[Anonymous], 1934, Ann. Sci. cole Norm. Sup
[5]  
Attouch H., 2006, MPS SIAM SERIES OPTI, V6
[6]  
Baliga B. R., 1983, Numerical Heat Transfer, V6, P245, DOI 10.1080/01495728308963086
[7]  
Bear J., 1972, DYNAMIC FLUIDS POROU, V1st
[8]  
Bessemoulin-Chatard M., 2012, THESIS U BLAISE PASC
[9]   A FINITE VOLUME SCHEME FOR NONLINEAR DEGENERATE PARABOLIC EQUATIONS [J].
Bessemoulin-Chatard, Marianne ;
Filbet, Francis .
SIAM JOURNAL ON SCIENTIFIC COMPUTING, 2012, 34 (05) :B559-B583
[10]  
Brenner K., 2013, INT J FINITE, V10, P1