A Numerical Algorithm of Solving the Forced sine-Gordon Equation

被引:0
作者
Bezen, Alexandre [1 ]
机构
[1] RMIT Univ, Sch Life & Phys Sci, Melbourne, Vic 3001, Australia
来源
2008 INTERNATIONAL MULTICONFERENCE ON COMPUTER SCIENCE AND INFORMATION TECHNOLOGY (IMCSIT), VOLS 1 AND 2 | 2008年
关键词
D O I
暂无
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
The numerical method of solving the problem of small perturbations of a stationary traveling solution (soliton) of well-known in physics sin-Gordon equation is presented. The solution is reduced to solving a set of linear hyperbolic partial differential equations. The Riemann function method is used to find a solution of a linear PDE. The value of the Riemann function at any particular point is found as a solution of an ordinary differential equation. An algorithm of calculation of a double integral over a triangular integration area is given.
引用
收藏
页码:238 / 242
页数:5
相关论文
共 9 条
  • [1] Ablowitz MJ., 1981, SOLITONS INVERSE SCA, V4
  • [2] Bezen A., 1997, Random and Computational Dynamics, V5, P307
  • [3] BEZEN A, 1996, 10 U MELB DEP STAT
  • [4] BEZEN A, 2007, P 3 INT C FRONT NONL, P50
  • [5] STOCHASTIC INTEGRALS IN PLANE
    CAIROLI, R
    WALSH, JB
    [J]. ACTA MATHEMATICA, 1975, 134 (1-2) : 111 - 183
  • [6] RANDOM NON-LINEAR WAVE-EQUATIONS - SMOOTHNESS OF THE SOLUTIONS
    CARMONA, R
    NUALART, D
    [J]. PROBABILITY THEORY AND RELATED FIELDS, 1988, 79 (04) : 469 - 508
  • [7] Press W. H., 1992, NUMERICAL RECIPES C, V2nd ed., P994
  • [8] Zauderer E., 1989, PARTIAL DIFFERENTIAL
  • [9] [No title captured]