Plasmonic Nanogalaxies: Multiscale Aperiodic Arrays for Surface-Enhanced Raman Sensing

被引:189
作者
Gopinath, Ashwin [1 ,2 ]
Boriskina, Svetlana V. [1 ,2 ]
Premasiri, W. Ranjith [3 ]
Ziegler, Lawrence [3 ]
Reinhard, Bjoern M. [3 ]
Dal Negro, Luca [1 ,2 ]
机构
[1] Boston Univ, Dept Elect & Comp Engn, Boston, MA 02215 USA
[2] Boston Univ, Photon Ctr, Boston, MA 02215 USA
[3] Boston Univ, Dept Chem, Boston, MA 02215 USA
关键词
SINGLE-MOLECULE DETECTION; METAL NANOPARTICLES; SILVER ELECTRODE; SCATTERING SERS; GOLD; SPECTROSCOPY; BACTERIA; DISCRIMINATION; SPHERES; SHAPES;
D O I
10.1021/nl902134r
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
The accurate and reproducible control of intense electromagnetic fields localized on the nanoscale is essential for the engineering of optical sensors based on the surface-enhanced Raman scattering (SERS) effect. In this paper, using rigorous generalized Mie theory (GMT) calculations and a combined top-down/bottom-up nanofabrication approach, we design and experimentally demonstrate similar to 10(8) spatially averaged, reproducible SERS enhancement in deterministic aperiodic arrays of Au nanoparticles with different length scales. Deterministic aperiodic arrays of 200 nm diameter nanocylinders are first fabricated using electron-beam lithography on quartz substrates, and smaller size (30 nm diameter) Au nanoparticles are subsequently positioned by in situ Au reduction at regions of maximum field enhancement. These multiscale structures, which we call "plasmonic nanogalaxies", feature a cascade enhancement effect due to the strong electromagnetic interactions of small satellite nanoparticles with localized fields in aperiodic arrays of nanocylinders. The development of SERS substrates based on aperiodic arrays with different length scales provides a novel strategy to engineer plasmon-enhanced biosensors with chemical fingerprinting capability.
引用
收藏
页码:3922 / 3929
页数:8
相关论文
共 45 条
[1]   Plasmon-based nanolenses assembled on a well-defined DNA template [J].
Bidault, Sebastien ;
de Abajo, F. Javier Garcia ;
Polman, Albert .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2008, 130 (09) :2750-+
[2]   Nanoparticles with Raman spectroscopic fingerprints for DNA and RNA detection [J].
Cao, YWC ;
Jin, RC ;
Mirkin, CA .
SCIENCE, 2002, 297 (5586) :1536-1540
[3]   Spectral gaps and mode localization in Fibonacci chains of metal nanoparticles [J].
Dal Negro, Luca ;
Feng, Ning-Ning .
OPTICS EXPRESS, 2007, 15 (22) :14396-14403
[4]   Quasi-periodic distribution of plasmon modes in two-dimensional Fibonacci arrays of metal nanoparticles [J].
Dallapiccola, Ramona ;
Gopinath, Ashwin ;
Stellacci, Francesco ;
Dal Negro, Luca .
OPTICS EXPRESS, 2008, 16 (08) :5544-5555
[5]  
DALNEGRO L, 2008, J OPT A-PURE APPL OP
[6]   Single-molecule detection of yeast cytochrome c by surface-enhanced Raman spectroscopy [J].
Delfino, I ;
Bizzarri, AR ;
Cannistraro, S .
BIOPHYSICAL CHEMISTRY, 2005, 113 (01) :41-51
[7]  
FLAVEL B, J NANOPART RES
[8]   RAMAN-SPECTRA OF PYRIDINE ADSORBED AT A SILVER ELECTRODE [J].
FLEISCHMANN, M ;
HENDRA, PJ ;
MCQUILLAN, AJ .
CHEMICAL PHYSICS LETTERS, 1974, 26 (02) :163-166
[9]  
FORESTIERE C, 2009, PHYS REV B, V79
[10]   The role of nanoparticle shapes and deterministic aperiodicity for the design of nanoplasmonic arrays [J].
Forestiere, Carlo ;
Miano, Giovanni ;
Boriskina, Svetlana V. ;
Dal Negro, Luca .
OPTICS EXPRESS, 2009, 17 (12) :9648-9661