Constrained optimization in expensive simulation: Novel approach

被引:93
作者
Kleijnen, Jack P. C. [1 ]
van Beers, Wim [1 ]
van Nieuwenhuyse, Inneke [2 ]
机构
[1] Tilburg Univ, Dept Informat Management, NL-5000 LE Tilburg, Netherlands
[2] Katholieke Univ Leuven, Dept Decis Sci & Informat Management, Res Ctr Operat Management, Louvain, Belgium
关键词
Simulation; Global optimization; Heuristics; Kriging; Bootstrap; GLOBAL OPTIMIZATION; SEQUENTIAL DESIGNS; MIXED-INTEGER; SYSTEMS; EFFICIENT;
D O I
10.1016/j.ejor.2009.05.002
中图分类号
C93 [管理学];
学科分类号
12 ; 1201 ; 1202 ; 120202 ;
摘要
This article presents a novel heuristic for constrained optimization of computationally expensive random simulation models. One output is selected as objective to be minimized, while other outputs must satisfy given threshold values. Moreover. the simulation inputs must be integer and satisfy linear or nonlinear constraints. The heuristic combines (i) sequentialized experimental designs to specify the simulation input combinations. (ii) Kriging (or Gaussian process or spatial correlation modeling) to analyze the global simulation input/output data resulting from these designs, and (iii) integer nonlinear programming to estimate the optimal solution from the Kriging metamodels. The heuristic is applied to an (s, S) inventory system and a call-center simulation, and compared with the popular commercial heuristic OptQuest embedded in the Arena versions 11 and 12. In these two applications the novel heuristic outperforms OptQuest in terms of number of simulated input combinations and quality of the estimated optimum. (C) 2009 Elsevier B.V. All rights reserved.
引用
收藏
页码:164 / 174
页数:11
相关论文
共 49 条
[31]  
Kenett R. S., 2006, Quality Progress, V39, P61
[32]  
Kleijnen J.P. C., 2008, Design and analysis of simulation experiments
[33]   Optimization of simulated systems: OptQuest and alternatives [J].
Kleijnen, Jack P. C. ;
Wan, Jie .
SIMULATION MODELLING PRACTICE AND THEORY, 2007, 15 (03) :354-362
[34]   Kriging metamodeling in simulation: A review [J].
Kleijnen, Jack P. C. .
EUROPEAN JOURNAL OF OPERATIONAL RESEARCH, 2009, 192 (03) :707-716
[35]   Application-driven sequential designs for simulation experiments: Kriging metamodelling [J].
Kleijnen, JPC ;
van Beers, WCM .
JOURNAL OF THE OPERATIONAL RESEARCH SOCIETY, 2004, 55 (08) :876-883
[36]   Validation of regression metamodels in simulation: Bootstrap approach [J].
Kleijnen, JPC ;
Deflandre, D .
EUROPEAN JOURNAL OF OPERATIONAL RESEARCH, 2006, 170 (01) :120-131
[37]  
Law A.M., 1982, Simulation Modeling and Analysis
[38]  
Lophaven S., 2002, DACE-A Matlab Kriging toolbox, version 2.0
[39]   Use of kriging models to approximate deterministic computer models [J].
Martin, JD ;
Simpson, TW .
AIAA JOURNAL, 2005, 43 (04) :853-863
[40]  
Miller R. G., 1981, Simultaneous statistical inference, DOI 10.1007/978-1-4613-8122-8