Theoretical predictions of elastic anisotropies and thermal properties of TMRe2 (TM=Sc, Y, Zr and Hf)

被引:24
作者
Kong, Zhuangzhuang [1 ]
Peng, Mingjun [1 ]
Sun, Yong [1 ]
Qu, Deyi [1 ]
Bao, Longke [1 ]
机构
[1] Kunming Univ Sci & Technol, Fac Mat Sci & Engn, Kunming 650093, Yunnan, Peoples R China
基金
中国国家自然科学基金;
关键词
First-principles calculations; TMRe2; Elastic anisotropy; Debye temperature; 1ST-PRINCIPLES; SUPERCONDUCTIVITY; CRYSTALS; HAFNIUM;
D O I
10.1016/j.physb.2019.07.009
中图分类号
O469 [凝聚态物理学];
学科分类号
070205 ;
摘要
Elastic anisotropy and thermal properties of hexagonal TMRe2 (TM = Sc, Y, Zr and Hf) were predicted by first-principles calculations. Elastic moduli were calculated from the single-crystal elastic constant (C-ij) by Voigt-Reuss-Hill approximations. The theoretical Vickers hardness was calculated from elastic modulus. By calculating the anisotropic indexes, 3D surface constructions and projections of elastic modulus, the sequence of anisotropy in elastic modulus is YRe2 > ScRe2 > ZrRe2 > HfRe2. Moreover, Debye temperature is in a sequence of ScRe2 > HfRe2 > ZrRe2 > YRe2, indicating that ScRe2 has the strongest chemical bonds and the greatest thermal conductivity. By calculating the sound velocities in different directions, it is concluded that these TMRe2 compounds are anisotropic in sound velocities.
引用
收藏
页码:222 / 228
页数:7
相关论文
共 37 条
[11]   THE ELASTIC BEHAVIOUR OF A CRYSTALLINE AGGREGATE [J].
HILL, R .
PROCEEDINGS OF THE PHYSICAL SOCIETY OF LONDON SECTION A, 1952, 65 (389) :349-355
[12]   SELF-CONSISTENT EQUATIONS INCLUDING EXCHANGE AND CORRELATION EFFECTS [J].
KOHN, W ;
SHAM, LJ .
PHYSICAL REVIEW, 1965, 140 (4A) :1133-&
[13]   THE PREPARATION, CRYSTAL STRUCTURES AND SOME PROPERTIES OF ZIRCONIUM AND HAFNIUM DIRHENIDE [J].
KRIKORIAN, NH ;
WITTEMAN, WG ;
BOWMAN, MG .
JOURNAL OF PHYSICAL CHEMISTRY, 1960, 64 (10) :1517-1519
[14]  
Kripyakevich P. I., 1963, CRYSTAL STRUCTURE CO
[15]   Structural and anisotropic elastic properties of hexagonal MP (M = Ti, Zr, Hf) monophosphides determined by first-principles calculations [J].
Li, Runyue ;
Duan, Yonghua .
PHILOSOPHICAL MAGAZINE, 2016, 96 (35) :3654-3670
[16]   Insights into the physics of interaction between borophene and O2-first-principles investigation [J].
Luo, W. W. ;
Liu, G. ;
Xu, Z. H. ;
Zhou, Z. Y. ;
Wang, X. ;
Ouyang, C. Y. ;
Liu, S. Q. .
COMPUTATIONAL MATERIALS SCIENCE, 2017, 140 :261-266
[17]   Progress in high temperature superconductor coated conductors and their applications [J].
Malozemoff, A. P. ;
Fleshler, S. ;
Rupich, M. ;
Thieme, C. ;
Li, X. ;
Zhang, W. ;
Otto, A. ;
Maguire, J. ;
Folts, D. ;
Yuan, J. ;
Kraemer, H-P ;
Schmidt, W. ;
Wohlfart, M. ;
Neumueller, H-W .
SUPERCONDUCTOR SCIENCE & TECHNOLOGY, 2008, 21 (03)
[18]   High-temperature superconductor fault current limiters: concepts, applications, and development status [J].
Noe, Mathias ;
Steurer, Michael .
SUPERCONDUCTOR SCIENCE & TECHNOLOGY, 2007, 20 (03) :R15-R29
[19]  
Perdew JP, 1996, PHYS REV LETT, V77, P3865, DOI 10.1103/PhysRevLett.77.3865
[20]   New Fe-based superconductors: properties relevant for applications [J].
Putti, M. ;
Pallecchi, I. ;
Bellingeri, E. ;
Cimberle, M. R. ;
Tropeano, M. ;
Ferdeghini, C. ;
Palenzona, A. ;
Tarantini, C. ;
Yamamoto, A. ;
Jiang, J. ;
Jaroszynski, J. ;
Kametani, F. ;
Abraimov, D. ;
Polyanskii, A. ;
Weiss, J. D. ;
Hellstrom, E. E. ;
Gurevich, A. ;
Larbalestier, D. C. ;
Jin, R. ;
Sales, B. C. ;
Sefat, A. S. ;
McGuire, M. A. ;
Mandrus, D. ;
Cheng, P. ;
Jia, Y. ;
Wen, H. H. ;
Lee, S. ;
Eom, C. B. .
SUPERCONDUCTOR SCIENCE & TECHNOLOGY, 2010, 23 (03)