Predicting long- and short-range order with restricted Boltzmann machine

被引:2
作者
Timirgazin, M. A. [1 ]
Arzhnikov, A. K. [1 ]
机构
[1] RAS, UdmFRC, Phys Tech Inst, UB, Izhevsk 426067, Russia
关键词
Ising model;
D O I
10.1063/9.0000078
中图分类号
TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
Generalization properties of the restricted Boltzmann machine (RBM) for two-dimensional Ising model are investigated. Both long-range and short-range order are examined: the first is studied for a spin lattice with ferromagnetic interaction, and the second is considered for a binary alloy on the square lattice. For each of these cases, algorithms are proposed that allow the once trained RBM to predict the order parameters for any temperature and alloy concentration.
引用
收藏
页数:5
相关论文
共 27 条
[1]  
ACKLEY DH, 1985, COGNITIVE SCI, V9, P147
[2]   Allowance for the short-range atomic order in describing the magnetic properties of disordered metal-metalloid alloys [J].
Arzhnikov, A ;
Bagrets, A ;
Bagrets, D .
JOURNAL OF MAGNETISM AND MAGNETIC MATERIALS, 1996, 153 (1-2) :195-201
[3]   Searching for exotic particles in high-energy physics with deep learning [J].
Baldi, P. ;
Sadowski, P. ;
Whiteson, D. .
NATURE COMMUNICATIONS, 2014, 5
[4]  
Baxter R. J., 2007, Exactly Solved Models in Statistical Mechanics
[5]   Machine learning and the physical sciences [J].
Carleo, Giuseppe ;
Cirac, Ignacio ;
Cranmer, Kyle ;
Daudet, Laurent ;
Schuld, Maria ;
Tishby, Naftali ;
Vogt-Maranto, Leslie ;
Zdeborova, Lenka .
REVIEWS OF MODERN PHYSICS, 2019, 91 (04)
[6]   Solving the quantum many-body problem with artificial neural networks [J].
Carleo, Giuseppe ;
Troyer, Matthias .
SCIENCE, 2017, 355 (6325) :602-605
[7]  
Carrasquilla J, 2017, NAT PHYS, V13, P431, DOI [10.1038/NPHYS4035, 10.1038/nphys4035]
[8]   Machine Learning Phases of Strongly Correlated Fermions [J].
Ch'ng, Kelvin ;
Carrasquilla, Juan ;
Melko, Roger G. ;
Khatami, Ehsan .
PHYSICAL REVIEW X, 2017, 7 (03)
[9]   AN APPROXIMATE THEORY OF ORDER IN ALLOYS [J].
COWLEY, JM .
PHYSICAL REVIEW, 1950, 77 (05) :669-675
[10]   Quantum Entanglement in Neural Network States [J].
Deng, Dong-Ling ;
Li, Xiaopeng ;
Das Sarma, S. .
PHYSICAL REVIEW X, 2017, 7 (02)