Feedback mechanisms stabilise degraded turf algal systems at a CO2 seep site

被引:13
作者
Harvey, Ben P. [1 ]
Allen, Ro [2 ,3 ]
Agostini, Sylvain [1 ]
Hoffmann, Linn J. [2 ]
Kon, Koetsu [1 ]
Summerfield, Tina C. [2 ]
Wada, Shigeki [1 ]
Hall-Spencer, Jason M. [1 ,4 ]
机构
[1] Univ Tsukuba, Shimoda Marine Res Ctr, 5-10-1 Shimoda, Shizuoka 4150025, Japan
[2] Univ Otago, Dept Bot, Dunedin, New Zealand
[3] Marine Biol Assoc UK, Plymouth PL1 2PB, Devon, England
[4] Univ Plymouth, Sch Biol & Marine Sci, Plymouth PL4 8AA, Devon, England
基金
日本学术振兴会;
关键词
OCEAN ACIDIFICATION; CORAL-REEFS; ECOSYSTEM SERVICES; REGIME SHIFTS; CARBONIC-ACID; SEDIMENT; DISSOCIATION; RESTORATION; MACROALGAE; STRESSORS;
D O I
10.1038/s42003-021-01712-2
中图分类号
Q [生物科学];
学科分类号
07 ; 0710 ; 09 ;
摘要
Human activities are rapidly changing the structure and function of coastal marine ecosystems. Large-scale replacement of kelp forests and coral reefs with turf algal mats is resulting in homogenous habitats that have less ecological and human value. Ocean acidification has strong potential to substantially favour turf algae growth, which led us to examine the mechanisms that stabilise turf algal states. Here we show that ocean acidification promotes turf algae over corals and macroalgae, mediating new habitat conditions that create stabilising feedback loops (altered physicochemical environment and microbial community, and an inhibition of recruitment) capable of locking turf systems in place. Such feedbacks help explain why degraded coastal habitats persist after being initially pushed past the tipping point by global and local anthropogenic stressors. An understanding of the mechanisms that stabilise degraded coastal habitats can be incorporated into adaptive management to better protect the contribution of coastal systems to human wellbeing.
引用
收藏
页数:10
相关论文
共 87 条
[1]  
Abramoff MD., 2004, BIOPHOTONICS INT, V11, P36, DOI DOI 10.1201/9781420005615.AX4
[2]   Ocean acidification drives community shifts towards simplified non-calcified habitats in a subtropical-temperate transition zone [J].
Agostini, Sylvain ;
Harvey, Ben P. ;
Wada, Shigeki ;
Kon, Koetsu ;
Milazzo, Marco ;
Inaba, Kazuo ;
Hall-Spencer, Jason M. .
SCIENTIFIC REPORTS, 2018, 8
[3]  
Airoldi L, 2003, OCEANOGR MAR BIOL, V41, P161
[4]  
Airoldi L, 1998, ECOLOGY, V79, P2759, DOI 10.2307/176515
[5]   Tropical CO2 seeps reveal the impact of ocean acidification on coral reef invertebrate recruitment [J].
Allen, Ro ;
Foggo, Andrew ;
Fabricius, Katharina ;
Balistreri, Annalisa ;
Hall-Spencer, Jason M. .
MARINE POLLUTION BULLETIN, 2017, 124 (02) :607-613
[6]  
[Anonymous], 2006, ORNLCDIAC 105, DOI [DOI 10.3334/CDIAC/OTG.CO2SYS_XLS_CDIAC105A, 10.3334/CDIAC/otg.CO2SYSXLSCD]
[7]   Ocean acidification and warming will lower coral reef resilience [J].
Anthony, Kenneth R. N. ;
Maynard, Jeffrey A. ;
Diaz-Pulido, Guillermo ;
Mumby, Peter J. ;
Marshall, Paul A. ;
Cao, Long ;
Hoegh-Guldberg, Ove .
GLOBAL CHANGE BIOLOGY, 2011, 17 (05) :1798-1808
[8]   Minor revision to V4 region SSU rRNA 806R gene primer greatly increases detection of SAR11 bacterioplankton [J].
Apprill, Amy ;
McNally, Sean ;
Parsons, Rachel ;
Weber, Laura .
AQUATIC MICROBIAL ECOLOGY, 2015, 75 (02) :129-137
[9]   Augmentative Biocontrol in Natural Marine Habitats: Persistence, Spread and Non-Target Effects of the Sea Urchin Evechinus chloroticus [J].
Atalah, Javier ;
Hopkins, Grant A. ;
Forrest, Barrie M. .
PLOS ONE, 2013, 8 (11)
[10]   Unseen players shape benthic competition on coral reefs [J].
Barott, Katie L. ;
Rohwer, Forest L. .
TRENDS IN MICROBIOLOGY, 2012, 20 (12) :621-628