Hamilton cycles in digraphs of unitary matrices

被引:1
作者
Gutin, G. [1 ]
Rafiey, A.
Severini, S.
Yeo, A.
机构
[1] Univ London, Dept Comp Sci, Egham TW20 0EX, Surrey, England
[2] Univ York, Dept Math, York YO10 5DD, N Yorkshire, England
[3] Univ York, Dept Comp Sci, York YO10 5DD, N Yorkshire, England
关键词
digraph; Hamilton cycle; sufficient conditions; conjecture; quantum mechanics; quantum computing;
D O I
10.1016/j.disc.2006.06.010
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
A set S subset of V is called a q(+)-set (q(-)-set, respectively) if S has at least two vertices and, for every u is an element of S, there exists nu is an element of S, nu not equal u such that N+(u) boolean AND N+(nu) not equal 0 (N-(u) boolean AND N-(nu) not equal 0, respectively). A digraph D is called s-quadrangular if, for every q+-set S, we have vertical bar U{N+(u) boolean AND N+(nu) : u not equal v, u, nu is an element of S}vertical bar >= vertical bar S vertical bar and, for every q(-)-set S, we have vertical bar U {N- (u) boolean AND N- (nu) : u, nu is an element of S}vertical bar >= vertical bar S vertical bar. We conjecture that every strong s-quadrangular digraph has a Hamilton cycle and provide some support for this conjecture. (c) 2006 Elsevier B.V. All rights reserved.
引用
收藏
页码:3315 / 3320
页数:6
相关论文
共 14 条
[1]  
Aharonov Dorit, 2001, arXiv: quant-ph/0012090, P50
[2]  
[Anonymous], PRODUCT GRAPHS STRUC
[3]  
Bang-Jensen J, 2000, Digraphs: Theory, Algorithms and Applications, V1st
[4]  
BEASLEY LR, 1993, P I MATH ITS APPL, V50, P207
[5]  
FIEDLER M, 1988, ADV MATH OPTIMIZATIO, V4451
[6]  
Geramita CV., 1979, ORTHOGONAL DESIGNS
[7]   Advances on the Hamiltonian problem - A survey [J].
Gould, RJ .
GRAPHS AND COMBINATORICS, 2003, 19 (01) :7-52
[8]   Quasi-hamiltonicity: A series of necessary conditions for a digraph to be hamiltonian [J].
Gutin, G ;
Yeo, A .
JOURNAL OF COMBINATORIAL THEORY SERIES B, 2000, 78 (02) :232-242
[9]   Quantum random walks: an introductory overview [J].
Kempe, J .
CONTEMPORARY PHYSICS, 2003, 44 (04) :307-327
[10]  
Lundgren JR, 2006, AUSTRALAS J COMB, V34, P247