High-Mobility CVD-Grown Ge/Strained Ge0.9Sn0.1/Ge Quantum-Well pMOSFETs on Si by Optimizing Ge Cap Thickness

被引:26
作者
Huang, Yu-Shiang [1 ]
Tsou, Ya-Jui [1 ]
Huang, Chih-Hsiung [1 ]
Huang, Chih-Hao [1 ]
Lan, Huang-Siang [1 ]
Liu, Chee Wee [2 ,3 ]
Huang, Yi-Chiau [4 ]
Chung, Hua [4 ]
Chang, Chorng-Ping [4 ]
Chu, Schubert S. [4 ]
Kuppurao, Satheesh [4 ]
机构
[1] Natl Taiwan Univ, Grad Inst Elect Engn, Dept Elect Engn, Taipei 106, Taiwan
[2] Natl Taiwan Univ, Grad Inst Elect Engn, Grad Inst Photon & Optoelect, Dept Elect Engn, Taipei 106, Taiwan
[3] Natl Nano Device Labs, Hsinchu 300, Taiwan
[4] Appl Mat Inc, Sunnyvale, CA 94085 USA
关键词
Cap thickness dependent of mobility; GeSn; low-frequency (LF) noise; strain; LOW-FREQUENCY NOISE; HOLE MOBILITY; METAL GATE; 1/F NOISE; PASSIVATION; TECHNOLOGY; GERMANIUM; MOSFETS; SEGREGATION; DENSITY;
D O I
10.1109/TED.2017.2695664
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
The high peak mobility of 509 cm(2)/V . s of the chemical vapor deposition-grown GeSn pMOSFETs is obtained using 1-nm Ge cap. The Ge cap on GeSn can reduce the scattering of oxide/interface charges and surface roughness for the holes in the GeSn quantum wells. However, the thick cap induces holes in the Ge cap itself, leading lower mobility than GeSn channels. The on current is enhanced by external stress due to the effective mass reduction. The normalized noise power density of the GeSn devices decreases with increasing Ge cap thickness, indicating the carrier number fluctuation and correlated mobility fluctuation are suppressed when the holes are away from interface.
引用
收藏
页码:2498 / 2504
页数:7
相关论文
共 55 条
[11]   Ge0.97Sn0.03 p-channel metal-oxide-semiconductor field-effect transistors: Impact of Si surface passivation layer thickness and post metal annealing [J].
Guo, Pengfei ;
Han, Genquan ;
Gong, Xiao ;
Liu, Bin ;
Yang, Yue ;
Wang, Wei ;
Zhou, Qian ;
Pan, Jisheng ;
Zhang, Zheng ;
Tok, Eng Soon ;
Yeo, Yee-Chia .
JOURNAL OF APPLIED PHYSICS, 2013, 114 (04)
[12]   Low-frequency noise assessment of silicon passivated Ge pMOSFETs with TiN/TaN/HfO2 gate stack [J].
Guo, W. ;
Nicholas, G. ;
Kaczer, B. ;
Todi, R. M. ;
De Jaeger, B. ;
Claeys, C. ;
Mercha, A. ;
Simoen, E. ;
Cretu, B. ;
Routoure, J. -M. ;
Carin, R. .
IEEE ELECTRON DEVICE LETTERS, 2007, 28 (04) :288-291
[13]  
Gupta S., 2011, IEDM, P398, DOI DOI 10.1109/IEDM.2011.6131568
[14]   Density and Capture Cross-Section of Interface Traps in GeSnO2 and GeO2 Grown on Heteroepitaxial GeSn [J].
Gupta, Somya ;
Simoen, Eddy ;
Loo, Roger ;
Madia, Oreste ;
Lin, Dennis ;
Merckling, Clement ;
Shimura, Yosuke ;
Conard, Thierry ;
Lauwaert, Johan ;
Vrielinck, Henk ;
Heyns, Marc .
ACS APPLIED MATERIALS & INTERFACES, 2016, 8 (21) :13181-13186
[15]   Hole Mobility Enhancement in Compressively Strained Ge0.93Sn0.07 pMOSFETs [J].
Gupta, Suyog ;
Huang, Yi-Chiau ;
Kim, Yihwan ;
Sanchez, Errol ;
Saraswat, Krishna C. .
IEEE ELECTRON DEVICE LETTERS, 2013, 34 (07) :831-833
[16]   Low-temperature growth and critical epitaxial thicknesses of fully strained metastable Ge1-xSnx (x≲0.26) alloys on Ge(001)2x1 [J].
Gurdal, O ;
Desjardins, P ;
Carlsson, JRA ;
Taylor, N ;
Radamson, HH ;
Sundgren, JE ;
Greene, JE .
JOURNAL OF APPLIED PHYSICS, 1998, 83 (01) :162-170
[17]   Dopant Segregation and Nickel Stanogermanide Contact Formation on p+ Ge0.947Sn0.053 Source/Drain [J].
Han, Genquan ;
Su, Shaojian ;
Zhou, Qian ;
Guo, Pengfei ;
Yang, Yue ;
Zhan, Chunlei ;
Wang, Lanxiang ;
Wang, Wei ;
Wang, Qiming ;
Xue, Chunlai ;
Cheng, Buwen ;
Yeo, Yee-Chia .
IEEE ELECTRON DEVICE LETTERS, 2012, 33 (05) :634-636
[18]  
Hashemi P., 2016, P IEEE S VLSI TECHN, P1, DOI [10.1109/VLSIT.2016.7573392, DOI 10.1109/VLSIT.2016.7573370]
[19]   Ge outdiffusion effect on flicker noise in strained-Si nMOSFETs [J].
Hua, WC ;
Lee, MH ;
Chen, PS ;
Maikap, S ;
Liu, CW ;
Chen, KM .
IEEE ELECTRON DEVICE LETTERS, 2004, 25 (10) :693-695
[20]  
Huang Y. S., 2016, IEDM, P822, DOI DOI 10.1109/IEDM.2016.7838531