Photoelectric Synapse Based on InGaZnO Nanofibers for High Precision Neuromorphic Computing

被引:24
|
作者
Zhu, Yixin [1 ,2 ]
Mao, Huiwu [1 ,2 ]
Zhu, Ying [1 ,2 ]
Zhu, Li [1 ,2 ]
Chen, Chunsheng [1 ,2 ]
Wang, Xiangjing [1 ,2 ]
Ke, Shuo [1 ,2 ]
Fu, Chuanyu [1 ,2 ]
Wan, Changjin [1 ,2 ]
Wan, Qing [1 ,2 ]
机构
[1] Nanjing Univ, Sch Elect Sci & Engn, Nanjing 210093, Peoples R China
[2] Nanjing Univ, Collaborat Innovat Ctr Adv Microstruct, Nanjing 210093, Peoples R China
基金
中国国家自然科学基金;
关键词
IGZO nanofiber; LTP; multilevel characteristics; neural network;
D O I
10.1109/LED.2022.3149900
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
We propose an indium gallium zinc oxide (IGZO) nanofiber based photoelectric synapse. Long-term potentiation and depression emulations are realized by exploiting optical and electrical stimulus as the excitatory and inhibitory inputs, respectively. Significantly, IGZO nanofiber-based photoelectric synapse exhibit multilevel characteristics (up to 10 bits) with low updating energy (similar to 1.0 fJ). Furthermore, an artificial neural network (ANN) based on IGZO nanofiber photoelectric synapse is built and evaluated through simulations. The performance indicates more than 93% accuracy in recognizing the standard MNIST handwritten digits, showing the great potential for high-precision neuromorphic computing by the IGZO nanofiber photoelectric synapse.
引用
收藏
页码:651 / 654
页数:4
相关论文
共 50 条
  • [21] Multisensory Ferroelectric Semiconductor Synapse for Neuromorphic Computing
    Zeng, Jinhua
    Feng, Guangdi
    Wu, Guangjian
    Liu, Jianquan
    Zhao, Qianru
    Wang, Huiting
    Wu, Shuaiqin
    Wang, Xudong
    Chen, Yan
    Han, Suting
    Tian, Bobo
    Duan, Chungang
    Lin, Tie
    Ge, Jun
    Shen, Hong
    Meng, Xiangjian
    Chu, Junhao
    Wang, Jianlu
    ADVANCED FUNCTIONAL MATERIALS, 2024, 34 (19)
  • [22] Photoelectric memristor based on a PZT/NSTO heterojunction for neuromorphic computing applications
    Wang, Jingjuan
    Wang, Zhaowen
    Zhao, Wenze
    Yan, Xiaobing
    JOURNAL OF MATERIALS CHEMISTRY C, 2025, 13 (09) : 4683 - 4690
  • [23] Amorphous InGaZnO (a-IGZO) Synaptic Transistor for Neuromorphic Computing
    Jang, Yuseong
    Park, Junhyeong
    Kang, Jimin
    Lee, Soo-Yeon
    ACS APPLIED ELECTRONIC MATERIALS, 2022, 4 (04) : 1427 - 1448
  • [24] Reservoir computing based on electric-double-layer coupled InGaZnO artificial synapse
    Yang, Yang
    Cui, Hangyuan
    Ke, Shuo
    Pei, Mengjiao
    Shi, Kailu
    Wan, Changjin
    Wan, Qing
    APPLIED PHYSICS LETTERS, 2023, 122 (04)
  • [25] MoS2Based Optical Device as Artificial Synapse for Neuromorphic Computing
    Sharmila, B.
    Divyashree, P.
    Dwivedi, Priyanka
    IEEE TRANSACTIONS ON ELECTRON DEVICES, 2023, 70 (03) : 1386 - 1392
  • [26] All-Oxide-Based Highly Transparent Photonic Synapse for Neuromorphic Computing
    Kumar, Mohit
    Abbas, Sohail
    Kim, Joondong
    ACS APPLIED MATERIALS & INTERFACES, 2018, 10 (40) : 34370 - 34376
  • [27] The Circuit Realization of a Neuromorphic Computing System with Memristor-Based Synapse Design
    Liu, Beiye
    Chen, Yiran
    Wysocki, Bryant
    Huang, Tingwen
    NEURAL INFORMATION PROCESSING, ICONIP 2012, PT I, 2012, 7663 : 357 - 365
  • [28] Memristor-based Synapse Design and Training Scheme for Neuromorphic Computing Architecture
    Wang, Hui
    Li, Hai
    Pino, Robinson E.
    2012 INTERNATIONAL JOINT CONFERENCE ON NEURAL NETWORKS (IJCNN), 2012,
  • [29] An electronic synapse device based on aluminum nitride memristor for neuromorphic computing application
    Guo, Yuanyang
    Hu, Wei
    Zhang, Changgeng
    Peng, Yao
    Guo, Yongcai
    JOURNAL OF PHYSICS D-APPLIED PHYSICS, 2020, 53 (19)
  • [30] Ferroelectric artificial synapse for neuromorphic computing and flexible applications
    Li, Qing-Xuan
    Liu, Yi-Lun
    Cao, Yuan-Yuan
    Wang, Tian-Yu
    Zhu, Hao
    Ji, Li
    Liu, Wen-Jun
    Sun, Qing-Qing
    Zhang, David Wei
    Chen, Lin
    FUNDAMENTAL RESEARCH, 2023, 3 (06): : 960 - 966