Photoelectric Synapse Based on InGaZnO Nanofibers for High Precision Neuromorphic Computing

被引:24
作者
Zhu, Yixin [1 ,2 ]
Mao, Huiwu [1 ,2 ]
Zhu, Ying [1 ,2 ]
Zhu, Li [1 ,2 ]
Chen, Chunsheng [1 ,2 ]
Wang, Xiangjing [1 ,2 ]
Ke, Shuo [1 ,2 ]
Fu, Chuanyu [1 ,2 ]
Wan, Changjin [1 ,2 ]
Wan, Qing [1 ,2 ]
机构
[1] Nanjing Univ, Sch Elect Sci & Engn, Nanjing 210093, Peoples R China
[2] Nanjing Univ, Collaborat Innovat Ctr Adv Microstruct, Nanjing 210093, Peoples R China
基金
中国国家自然科学基金;
关键词
IGZO nanofiber; LTP; multilevel characteristics; neural network;
D O I
10.1109/LED.2022.3149900
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
We propose an indium gallium zinc oxide (IGZO) nanofiber based photoelectric synapse. Long-term potentiation and depression emulations are realized by exploiting optical and electrical stimulus as the excitatory and inhibitory inputs, respectively. Significantly, IGZO nanofiber-based photoelectric synapse exhibit multilevel characteristics (up to 10 bits) with low updating energy (similar to 1.0 fJ). Furthermore, an artificial neural network (ANN) based on IGZO nanofiber photoelectric synapse is built and evaluated through simulations. The performance indicates more than 93% accuracy in recognizing the standard MNIST handwritten digits, showing the great potential for high-precision neuromorphic computing by the IGZO nanofiber photoelectric synapse.
引用
收藏
页码:651 / 654
页数:4
相关论文
共 27 条
[1]   Solar-blind SnO2 nanowire photo-synapses for associative learning and coincidence detection [J].
Chen, Yang ;
Qiu, Weijie ;
Wang, Xiaowu ;
Liu, Wanrong ;
Wang, Juxiang ;
Dai, Guozhang ;
Yuan, Yongbo ;
Gao, Yongli ;
Sun, Jia .
NANO ENERGY, 2019, 62 :393-400
[2]   Synaptic transistors with human brain-like fJ energy consumption via double oxide semiconductor engineering for neuromorphic electronics [J].
Cho, Seong-In ;
Jeon, Jae Bum ;
Kim, Joo Hyung ;
Lee, Seung Hee ;
Jeong, Wooseok ;
Kim, Jingyu ;
Kim, Geunyoung ;
Kim, Kyung Min ;
Park, Sang-Hee Ko .
JOURNAL OF MATERIALS CHEMISTRY C, 2021, 9 (32) :10243-10253
[3]  
He C., ACS APPL
[4]   IGZO-based floating-gate synaptic transistors for neuromorphic computing [J].
He, Yongli ;
Liu, Rui ;
Jiang, Shanshan ;
Chen, Chunsheng ;
Zhu, Li ;
Shi, Yi ;
Wan, Qing .
JOURNAL OF PHYSICS D-APPLIED PHYSICS, 2020, 53 (21)
[5]   Dual-Functional Long-Term Plasticity Emulated in IGZO-Based Photoelectric Neuromorphic Transistors [J].
He, Yongli ;
Nie, Sha ;
Liu, Rui ;
Jiang, Shanshan ;
Shi, Yi ;
Wan, Qing .
IEEE ELECTRON DEVICE LETTERS, 2019, 40 (05) :818-821
[6]   Present status of amorphous In-Ga-Zn-O thin-film transistors [J].
Kamiya, Toshio ;
Nomura, Kenji ;
Hosono, Hideo .
SCIENCE AND TECHNOLOGY OF ADVANCED MATERIALS, 2010, 11 (04)
[7]   Brain-Inspired Photonic Neuromorphic Devices using Photodynamic Amorphous Oxide Semiconductors and their Persistent Photoconductivity [J].
Lee, Minkyung ;
Lee, Woobin ;
Choi, Seungbeom ;
Jo, Jeong-Wan ;
Kim, Jaekyun ;
Park, Sung Kyu ;
Kim, Yong-Hoon .
ADVANCED MATERIALS, 2017, 29 (28)
[8]   Hardware Implementation of Neuromorphic Computing Using Large-Scale Memristor Crossbar Arrays [J].
Li, Yesheng ;
Ang, Kah-Wee .
ADVANCED INTELLIGENT SYSTEMS, 2021, 3 (01)
[9]   Nitrogen-induced ultralow power switching in flexible ZnO-based memristor for artificial synaptic learning [J].
Lin, Ya ;
Liu, Jilin ;
Shi, Jiajuan ;
Zeng, Tao ;
Shan, Xuanyu ;
Wang, Zhongqiang ;
Zhao, Xiaoning ;
Xu, Haiyang ;
Liu, Yichun .
APPLIED PHYSICS LETTERS, 2021, 118 (10)
[10]   The Design of 3D-Interface Architecture in an Ultralow-Power, Electrospun Single-Fiber Synaptic Transistor for Neuromorphic Computing [J].
Liu, Dapeng ;
Shi, Qianqian ;
Dai, Shilei ;
Huang, Jia .
SMALL, 2020, 16 (13)