Kernel optimization-based discriminant analysis for face recognition

被引:23
作者
Li, Jun-Bao [1 ]
Pan, Jeng-Shyang [2 ]
Lu, Zhe-Ming [3 ]
机构
[1] Harbin Inst Technol, Dept Automat Test & Control, Harbin 150001, Peoples R China
[2] Natl Kaohsiung Univ Appl Sci, Dept Elect Engn, Kaohsiung 807, Taiwan
[3] Shenzhen Univ Town, Shenzhen Grad Sch, Visual Informat Anal & Proc Res Ctr, Harbin Inst Technol, Shenzhen 518055, Peoples R China
关键词
Face recognition; Kernel optimization-based discriminant analysis (KODA); Kernel discriminant analysis (KDA);
D O I
10.1007/s00521-009-0282-y
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
The selection of kernel function and its parameter influences the performance of kernel learning machine. The difference geometry structure of the empirical feature space is achieved under the different kernel and its parameters. The traditional changing only the kernel parameters method will not change the data distribution in the empirical feature space, which is not feasible to improve the performance of kernel learning. This paper applies kernel optimization to enhance the performance of kernel discriminant analysis and proposes a so-called Kernel Optimization-based Discriminant Analysis (KODA) for face recognition. The procedure of KODA consisted of two steps: optimizing kernel and projecting. KODA automatically adjusts the parameters of kernel according to the input samples and performance on feature extraction is improved for face recognition. Simulations on Yale and ORL face databases are demonstrated the feasibility of enhancing KDA with kernel optimization.
引用
收藏
页码:603 / 612
页数:10
相关论文
共 27 条
[1]   Improving support vector machine classifiers by modifying kernel functions [J].
Amari, S ;
Wu, S .
NEURAL NETWORKS, 1999, 12 (06) :783-789
[2]   Generalized discriminant analysis using a kernel approach [J].
Baudat, G ;
Anouar, FE .
NEURAL COMPUTATION, 2000, 12 (10) :2385-2404
[3]   Eigenfaces vs. Fisherfaces: Recognition using class specific linear projection [J].
Belhumeur, PN ;
Hespanha, JP ;
Kriegman, DJ .
IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 1997, 19 (07) :711-720
[4]   RETRACTED: Artifacts and noise removal in electrocardiograms using independent component analysis (Retracted Article) [J].
Chawla, M. P. S. ;
Verma, H. K. ;
Kumar, Vinod .
INTERNATIONAL JOURNAL OF CARDIOLOGY, 2008, 129 (02) :278-281
[5]   A new statistical PCA-ICA algorithm for location of R-peaks in ECG [J].
Chawla, M. P. S. ;
Verma, H. K. ;
Kumar, Vinod .
INTERNATIONAL JOURNAL OF CARDIOLOGY, 2008, 129 (01) :146-148
[6]   Parametrization and correction of electrocardiogram signals using independent component analysis [J].
Chawla, M. P. S. .
JOURNAL OF MECHANICS IN MEDICINE AND BIOLOGY, 2007, 7 (04) :355-379
[7]   SEGMENT CLASSIFICATION OF ECG DATA AND CONSTRUCTION OF SCATTER PLOTS USING PRINCIPAL COMPONENT ANALYSIS [J].
Chawla, M. P. S. .
JOURNAL OF MECHANICS IN MEDICINE AND BIOLOGY, 2008, 8 (03) :421-458
[8]  
CHAWLA MPS, 2008, INT J NEURAL COMPUT
[9]   Kernel machine-based one-parameter regularized Fisher discriminant method for face recognition [J].
Chen, WS ;
Yuen, PC ;
Huang, J ;
Dai, DQ .
IEEE TRANSACTIONS ON SYSTEMS MAN AND CYBERNETICS PART B-CYBERNETICS, 2005, 35 (04) :659-669
[10]  
DAI G, 2007, P 24 INT C MACH LEAR, P1457