An stable online clustering fuzzy neural network for nonlinear system identification

被引:15
作者
de Jesus Rubio, Jose [1 ]
Pacheco, Jaime [1 ]
机构
[1] IPN, ESIME Azcapotzalco, Secc Estudios Posgrad & Invest, Mexico City 07738, DF, Mexico
关键词
Fuzzy neural networks; Clustering; Nonlinear systems; Identification; Stability;
D O I
10.1007/s00521-009-0289-4
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
In this paper, we propose a online clustering fuzzy neural network. The proposed neural fuzzy network uses the online clustering to train the structure, the gradient to train the parameters of the hidden layer, and the Kalman filter algorithm to train the parameters of the output layer. In our algorithm, learning structure and parameter learning are updated at the same time, we do not make difference in structure learning and parameter learning. The center of each rule is updated to obtain the center is near to the incoming data in each iteration. In this way, it does not need to generate a new rule in each iteration, i.e., it neither generates many rules nor need to prune the rules. We prove the stability of the algorithm.
引用
收藏
页码:633 / 641
页数:9
相关论文
共 50 条
[21]   Neural Networks for Efficient Nonlinear Online Clustering [J].
Bahroun, Yanis ;
Hunsicker, Eugenie ;
Soltoggio, Andrea .
NEURAL INFORMATION PROCESSING, ICONIP 2017, PT I, 2017, 10634 :316-324
[22]   A compensation-based recurrent fuzzy neural network for dynamic system identification [J].
Lin, CJ ;
Chen, CH .
EUROPEAN JOURNAL OF OPERATIONAL RESEARCH, 2006, 172 (02) :696-715
[23]   Clustering for nonlinear system identification [J].
Rubio Avila, Jose De Jesus ;
Ramirez, Andres Ferreyra ;
Aviles-Cruz, Carlos ;
Vazquez-Alvarez, Ivan .
PROCEEDINGS OF THE 12TH WSEAS INTERNATIONAL CONFERENCE ON COMPUTERS , PTS 1-3: NEW ASPECTS OF COMPUTERS, 2008, :616-+
[24]   A Nonlinear System Identification Method Based on Fuzzy dynamical Model and State-Space Neural Network [J].
Huang, Xiaobin ;
Qi, Hongjing .
2008 CHINESE CONTROL AND DECISION CONFERENCE, VOLS 1-11, 2008, :4738-+
[25]   Online Adaptive Fuzzy Neural Identification of a Piezoelectric Tube Actuator System [J].
Yang Dalin ;
Yang Weidong ;
Zhang Zhu .
APPLIED MECHANICS AND MATERIALS I, PTS 1-3, 2013, 275-277 :915-924
[26]   Contribution-Factor based Fuzzy Min-Max Neural Network: Order-Dependent Clustering for Fuzzy System Identification [J].
Hou, Peixin ;
Yue, Jiguang ;
Deng, Hao ;
Liu, Shuguang ;
Sun, Qiang .
INTERNATIONAL JOURNAL OF COMPUTATIONAL INTELLIGENCE SYSTEMS, 2018, 11 (01) :737-756
[27]   Contribution-Factor based Fuzzy Min-Max Neural Network: Order-Dependent Clustering for Fuzzy System Identification [J].
Peixin Hou ;
Jiguang Yue ;
Hao Deng ;
Shuguang Liu ;
Qiang Sun .
International Journal of Computational Intelligence Systems, 2018, 11 :737-756
[28]   Nonlinear System Identification Based on Recurrent Wavelet Neural Network [J].
Zhao, Fengyao ;
Hu, Liangming ;
Li, Zongkun .
SIXTH INTERNATIONAL SYMPOSIUM ON NEURAL NETWORKS (ISNN 2009), 2009, 56 :517-525
[29]   Training Fuzzy Neural Network via Multiobjective Optimization for Nonlinear Systems Identification [J].
Han, Honggui ;
Sun, Chenxuan ;
Wu, Xiaolong ;
Yang, Hongyan ;
Qiao, Junfei .
IEEE TRANSACTIONS ON FUZZY SYSTEMS, 2022, 30 (09) :3574-3588
[30]   Nonlinear system identification using discrete-time neural networks with stable learning algorithm [J].
Korkobi, Talel ;
Djemel, Mohamed ;
Chtourou, Mohamed .
ICINCO 2008: PROCEEDINGS OF THE FIFTH INTERNATIONAL CONFERENCE ON INFORMATICS IN CONTROL, AUTOMATION AND ROBOTICS, VOL ICSO: INTELLIGENT CONTROL SYSTEMS AND OPTIMIZATION, 2008, :351-+