Thermal Performance of a PCM-Based Thermal Energy Storage with Metal Foam Enhancement

被引:33
作者
Chen, Xue [1 ,2 ]
Li, Xiaolei [2 ]
Xia, Xinlin [2 ,3 ]
Sun, Chuang [2 ,3 ]
Liu, Rongqiang [1 ]
机构
[1] Harbin Inst Technol, Sch Mechatron Engn, 92 West Dazhi St, Harbin 150001, Heilongjiang, Peoples R China
[2] Harbin Inst Technol, Sch Energy Sci & Engn, 92 West Dazhi St, Harbin 150001, Heilongjiang, Peoples R China
[3] Harbin Inst Technol, Key Lab Aerosp Thermophys MIIT, 92 West Dazhi St, Harbin 150001, Heilongjiang, Peoples R China
基金
中国博士后科学基金; 中国国家自然科学基金;
关键词
thermal energy storage; phase change material; metal foam; heat transfer enhancement; PHASE-CHANGE MATERIALS; LATENT-HEAT STORAGE; POROSITY; SOLIDIFICATION; SYSTEM; CONDUCTIVITY; MATRIX;
D O I
10.3390/en12173275
中图分类号
TE [石油、天然气工业]; TK [能源与动力工程];
学科分类号
0807 ; 0820 ;
摘要
The energy transport inside a phase change material (PCM) based thermal energy storage system using metal foam as an enhancement technique is investigated numerically. The paraffin is used as the PCM and water as the heat transfer fluid (HTF). The transient heat transfer during the charging and discharging processes is solved, based on the volume averaged conservation equations. The flow in PCM/foam and HTF/foam composites is modelled by the Forchheimer-extended Darcy equation, while the two-temperature model is employed to account for the local thermal non-equilibrium effect between the foam matrix and fluid phase. The results show that the overall performance is greatly improved by inserting metal foam in both HTF and PCM sides. A nearly 84.9% decrease in the time needed for the total process is found compared with the case of pure PCM, and 40% compared with the case of metal foam insert only in the PCM side. Foam porosity and HTF inlet temperature greatly affect the dynamic heat storage/release process.
引用
收藏
页数:18
相关论文
共 31 条
[11]   A two-temperature model for solid-liquid phase change in metal foams [J].
Krishnan, S ;
Murthy, JY ;
Garimella, SV .
JOURNAL OF HEAT TRANSFER-TRANSACTIONS OF THE ASME, 2005, 127 (09) :995-1004
[12]   Latent heat thermal storage with variable porosity metal matrix: A numerical study [J].
Kumar, Ashish ;
Saha, Sandip K. .
RENEWABLE ENERGY, 2018, 125 :962-973
[13]   Experimental study on the influence of foam porosity and pore size on the melting of phase change materials [J].
Lafdi, K. ;
Mesalhy, O. ;
Shaikh, S. .
JOURNAL OF APPLIED PHYSICS, 2007, 102 (08)
[14]   Integrating Two-Stage Phase Change Material Thermal Storage for Cascaded Waste Heat Recovery of Diesel-Engine-Powered Distributed Generation Systems: A Case Study [J].
Li, Dacheng ;
Ding, Yulong ;
Wang, Peilun ;
Wang, Shuhao ;
Yao, Hua ;
Wang, Jihong ;
Huang, Yun .
ENERGIES, 2019, 12 (11)
[15]   Experimental and numerical studies on melting phase change heat transfer in open-cell metallic foams filled with paraffin [J].
Li, W. Q. ;
Qu, Z. G. ;
He, Y. L. ;
Tao, W. Q. .
APPLIED THERMAL ENGINEERING, 2012, 37 :1-9
[16]   Review on thermal conductivity enhancement, thermal properties and applications of phase change materials in thermal energy storage [J].
Lin, Yaxue ;
Jia, Yuting ;
Alva, Guruprasad ;
Fang, Guiyin .
RENEWABLE & SUSTAINABLE ENERGY REVIEWS, 2018, 82 :2730-2742
[17]   Numerical modeling for solid-liquid phase change phenomena in porous media: Shell-and-tube type latent heat thermal energy storage [J].
Liu, Zhenyu ;
Yao, Yuanpeng ;
Wu, Huiying .
APPLIED ENERGY, 2013, 112 :1222-1232
[18]   Numerical modeling and experimental validation of a PCM to air heat exchanger [J].
Lopez, Juan Pablo Arzamendia ;
Kuznik, Frederic ;
Baillis, Dominique ;
Virgone, Joseph .
ENERGY AND BUILDINGS, 2013, 64 :415-422
[19]   Solidification enhancement in a triplex-tube latent heat energy storage system using nanoparticles-metal foam combination [J].
Mahdi, Jasim M. ;
Nsofor, Emmanuel C. .
ENERGY, 2017, 126 :501-512
[20]   Melting enhancement in triplex-tube latent heat energy storage system using nanoparticles-metal foam combination [J].
Mahdi, Jasim M. ;
Nsofor, Emmanuel C. .
APPLIED ENERGY, 2017, 191 :22-34