Non-abelian tensor and exterior products of multiplicative Lie rings

被引:7
作者
Donadze, Guram [1 ]
Inassaridze, Nick [2 ,3 ,4 ]
Ladra, Manuel [5 ]
机构
[1] Indian Inst Sci Educ & Res Thiruvananthapuram, Thiruvananthapuram 695016, Kerala, India
[2] Tbilisi State Univ, A Razmadze Math Inst, Tamarashvili Str 6, Tbilisi 0177, Georgia
[3] Georgian Tech Univ, Kostava Str 77, Tbilisi 0175, Georgia
[4] Tbilisi Ctr Math Sci, Tbilisi, Georgia
[5] Univ Santiago de Compostela, IMAT, Dept Algebra, Santiago De Compostela 15782, Spain
基金
美国国家科学基金会;
关键词
Multiplicative lie rings; non-abelian tensor and exterior products; homology; HOMOLOGY;
D O I
10.1515/forum-2015-0096
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We define a non-abelian tensor product of multiplicative Lie rings. This is a new concept providing a common approach to the non-abelian tensor product of groups defined by Brown and Loday and to the non-abelian tensor product of Lie rings defined by Ellis. We also prove an analogue of Miller's theorem for multiplicative Lie rings.
引用
收藏
页码:563 / 574
页数:12
相关论文
共 16 条
  • [11] A non-abelian exterior product and homology of Leibniz algebras
    Donadze, Guram
    Garcia-Martinez, Xabier
    Khmaladze, Emzar
    REVISTA MATEMATICA COMPLUTENSE, 2018, 31 (01): : 217 - 236
  • [12] A non-abelian exterior product and homology of Leibniz algebras
    Guram Donadze
    Xabier García-Martínez
    Emzar Khmaladze
    Revista Matemática Complutense, 2018, 31 : 217 - 236
  • [13] Non-abelian Quantum Statistics on Graphs
    Maciazek, Tomasz
    Sawicki, Adam
    COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2019, 371 (03) : 921 - 973
  • [14] Low-dimensional non-abelian Leibniz cohomology
    Manuel Casas, Jose
    Khmaladze, Emzar
    Ladra, Manuel
    FORUM MATHEMATICUM, 2013, 25 (03) : 443 - 469
  • [15] Non-abelian cohomology jump loci from an analytic viewpoint
    Dimca, Alexandru
    Papadima, Stefan
    COMMUNICATIONS IN CONTEMPORARY MATHEMATICS, 2014, 16 (04)
  • [16] A SEIFERT-VAN KAMPEN THEOREM IN NON-ABELIAN ALGEBRA
    Duckerts-Antoine, Mathieu
    Van Der Linden, Tim
    HOMOLOGY HOMOTOPY AND APPLICATIONS, 2018, 20 (02) : 79 - 103