Non-abelian tensor and exterior products of multiplicative Lie rings

被引:7
作者
Donadze, Guram [1 ]
Inassaridze, Nick [2 ,3 ,4 ]
Ladra, Manuel [5 ]
机构
[1] Indian Inst Sci Educ & Res Thiruvananthapuram, Thiruvananthapuram 695016, Kerala, India
[2] Tbilisi State Univ, A Razmadze Math Inst, Tamarashvili Str 6, Tbilisi 0177, Georgia
[3] Georgian Tech Univ, Kostava Str 77, Tbilisi 0175, Georgia
[4] Tbilisi Ctr Math Sci, Tbilisi, Georgia
[5] Univ Santiago de Compostela, IMAT, Dept Algebra, Santiago De Compostela 15782, Spain
基金
美国国家科学基金会;
关键词
Multiplicative lie rings; non-abelian tensor and exterior products; homology; HOMOLOGY;
D O I
10.1515/forum-2015-0096
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We define a non-abelian tensor product of multiplicative Lie rings. This is a new concept providing a common approach to the non-abelian tensor product of groups defined by Brown and Loday and to the non-abelian tensor product of Lie rings defined by Ellis. We also prove an analogue of Miller's theorem for multiplicative Lie rings.
引用
收藏
页码:563 / 574
页数:12
相关论文
共 16 条
  • [1] The Non-Abelian Tensor and Exterior Products of Crossed Modules of Lie Algebras
    Ravanbod, Hajar
    Salemkar, Ali Reza
    JOURNAL OF LIE THEORY, 2018, 28 (01) : 169 - 185
  • [2] The non-abelian tensor and exterior products of crossed modules of Lie superalgebras
    Taha, Tahereh Fakhr
    Ladra, Manuel
    Paez-Guillan, Pilar
    JOURNAL OF ALGEBRA AND ITS APPLICATIONS, 2022, 21 (09)
  • [3] A Non-Abelian Tensor Product of Lie Crossed Modules
    Javan, Arash
    Ravanbod, Hajar
    Salemkar, Ali Reza
    JOURNAL OF LIE THEORY, 2021, 31 (04) : 933 - 956
  • [4] A non-abelian tensor product of precrossed modules in lie algebras
    Edalatzadeh, Behrouz
    COMMUNICATIONS IN ALGEBRA, 2020, 48 (04) : 1591 - 1600
  • [5] A Non-abelian Tensor Product of Hom-Lie Algebras
    Casas, J. M.
    Khmaladze, E.
    Pacheco Rego, N.
    BULLETIN OF THE MALAYSIAN MATHEMATICAL SCIENCES SOCIETY, 2017, 40 (03) : 1035 - 1054
  • [6] Non-abelian tensor product and homology of Lie superalgebras
    Garcia-Martinez, Xabier
    Khraaladze, Emzar
    Ladra, Manuel
    JOURNAL OF ALGEBRA, 2015, 440 : 464 - 488
  • [7] Non-abelian tensor product of precrossed modules in Lie algebras, structure and applications
    Edalatzadeh, Behrouz
    Javan, Arash
    Salemkar, Ali Reza
    COMMUNICATIONS IN ALGEBRA, 2022, 50 (03) : 927 - 939
  • [8] On some properties preserved by the non-abelian tensor product of Hom-Lie algebras
    Casas, J. M.
    Khmaladze, E.
    Pacheco Rego, N.
    LINEAR & MULTILINEAR ALGEBRA, 2021, 69 (04) : 607 - 626
  • [9] On the finiteness of the non-abelian tensor product of groups
    Bastos, Raimundo
    Nakaoka, Irene N.
    Rocco, Norai R.
    JOURNAL OF ALGEBRA, 2025, 664 : 251 - 267
  • [10] On some closure properties of the non-abelian tensor product
    Donadze, G.
    Ladra, M.
    Thomas, V. Z.
    JOURNAL OF ALGEBRA, 2017, 472 : 399 - 413