Interface induced performance enhancement in flexible BaTiO3/PVDF-TrFE based piezoelectric nanogenerators

被引:235
作者
Shi, Kunming [1 ]
Chai, Bin [1 ]
Zou, Haiyang [2 ]
Shen, Peiyue [3 ]
Sun, Bin [4 ]
Jiang, Pingkai [1 ]
Shi, Zhiwen [3 ]
Huang, Xingyi [1 ]
机构
[1] Shanghai Jiao Tong Univ, Dept Polymer Sci & Engn, Shanghai Key Lab Elect Insulat & Thermal Aging, State Key Lab Met Matrix Composites, Shanghai 200240, Peoples R China
[2] Georgia Inst Technol, Sch Mat Sci & Engn, Atlanta, GA 30332 USA
[3] Shanghai Jiao Tong Univ, Sch Phys & Astron, Key Lab Artificial Struct & Quantum Control, Minist Educ, Shanghai 200240, Peoples R China
[4] Qingdao Univ, Coll Microtechnol & Nanotechnol, Qingdao 266071, Peoples R China
基金
中国国家自然科学基金;
关键词
PVDF-TrFE; BaTiO3; Interface tailoring; Electrospinning; Piezoelectric nanogenerator;
D O I
10.1016/j.nanoen.2020.105515
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Nanocomposites consisting of a flexible piezoelectric polymer and a reinforcing phase have shown great potential for constructing high-performance piezoelectric nanogenerators (PENGs). However, the weak interface and poor dispersion of piezoelectric reinforcing phase significantly impair the electromechanical properties (e.g., effective stress/strain, piezoelectric coefficients) of the nanocomposites, thus severely restricting the performance enhancement of the PENGs. In this study, we hydrothermally synthesized the piezoelectric reinforcing phase of BaTiO3 nanowires, and grafted a layer of high-modulus polymethyl methacrylate (PMMA) onto the nanowire surface via surface-initiated polymerization. The PMMA coating layer forms a strong interface between BaTiO3 nanowires and the polymer matrix [i.e., poly(vinylidenefluoride-co-trifluoroethylene)], which efficiently improves dispersion of the BaTiO3 nanowires and stress transfer at the interface, therefore resulting in an enhanced output performance in the fibrous nanocomposite PENGs. The output voltage and current of the PMMA encapsulated BaTiO3 (PMMA@BaTiO3) nanowires-based PENG can reach to 12.6 V and 1.30 mu A, with a maximum output power of 4.25 mu W, which is 2.2 times and 7.6 times higher than the PENG with unmodified BaTiO3 nanowires and the PENG without BaTiO3 nanowires, respectively. Furthermore, the flexible PENG exhibits great stability that could continuously generate stable electrical pulses for 6000 cycles without any decline. This study provides a feasible approach of interface tailoring for achieving high-performance piezoelectric nanocomposite and shows the promising potential of the fibrous nanocomposites in biomechanical energy harvesters and smart wearable sensors.
引用
收藏
页数:11
相关论文
共 67 条
[1]   Piezoelectric energy harvesters for biomedical applications [J].
Ali, Faizan ;
Raza, Waseem ;
Li, Xilin ;
Gul, Hajera ;
Kim, Ki-Hyun .
NANO ENERGY, 2019, 57 :879-902
[2]   High-Performance Coils and Yarns of Polymeric Piezoelectric Nanofibers [J].
Baniasadi, Mahmoud ;
Huang, Jiacheng ;
Xu, Zhe ;
Moreno, Salvador ;
Yang, Xi ;
Chang, Jason ;
Quevedo-Lopez, Manuel Angel ;
Naraghi, Mohammad ;
Minary-Jolandan, Majid .
ACS APPLIED MATERIALS & INTERFACES, 2015, 7 (09) :5358-5366
[3]   High-Output Lead-Free Flexible Piezoelectric Generator Using Single-Crystalline GaN Thin Film [J].
Chen, Jie ;
Oh, Seung Kyu ;
Zou, Haiyang ;
Shervin, Shahab ;
Wang, Weijie ;
Pouladi, Sara ;
Zi, Yunlong ;
Wang, Zhong Lin ;
Ryou, Jae-Hyun .
ACS APPLIED MATERIALS & INTERFACES, 2018, 10 (15) :12839-12846
[4]   High-Performance Piezoelectric Nanogenerators with Imprinted P(VDF-TrFE)/BaTiO3 Nanocomposite Micropillars for Self-Powered Flexible Sensors [J].
Chen, Xiaoliang ;
Li, Xiangming ;
Shao, Jinyou ;
An, Ningli ;
Tian, Hongmiao ;
Wang, Chao ;
Han, Tianyi ;
Wang, Li ;
Lu, Bingheng .
SMALL, 2017, 13 (23)
[5]   Crystalline polymorphism in poly(vinylidenefluoride) membranes [J].
Cui, Zhaoliang ;
Hassankiadeh, Naser Tavajohi ;
Zhuang, Yongbing ;
Drioli, Enrico ;
Lee, Young Moo .
PROGRESS IN POLYMER SCIENCE, 2015, 51 :94-126
[6]   Piezo-phototronic Effect Enhanced Responsivity of Photon Sensor Based on Composition-Tunable Ternary CdSxSe1-x Nanowires [J].
Dai, Guozhang ;
Zou, Haiyang ;
Wang, Xingfu ;
Zhou, Yuankai ;
Wang, Peihong ;
Ding, Yong ;
Zhang, Yan ;
Yang, Junliang ;
Wang, Zhong Lin .
ACS PHOTONICS, 2017, 4 (10) :2495-2503
[7]   Processing of PVDF-based electroactive/ferroelectric films: importance of PMMA and cooling rate from the melt state on the crystallization of PVDF beta-crystals [J].
De Neef, Alexandre ;
Samuel, Cedric ;
Stoclet, Gregory ;
Rguiti, Mohamed ;
Courtois, Christian ;
Dubois, Philippe ;
Soulestin, Jeremie ;
Raquez, Jean-Marie .
SOFT MATTER, 2018, 14 (22) :4591-4602
[8]   Fiber/Fabric-Based Piezoelectric and Triboelectric Nanogenerators for Flexible/Stretchable and Wearable Electronics and Artificial Intelligence [J].
Dong, Kai ;
Peng, Xiao ;
Wang, Zhong Lin .
ADVANCED MATERIALS, 2020, 32 (05)
[9]   Flexible Nanogenerators for Energy Harvesting and Self-Powered Electronics [J].
Fan, Feng Ru ;
Tang, Wei ;
Wang, Zhong Lin .
ADVANCED MATERIALS, 2016, 28 (22) :4283-4305
[10]   History and recent progress in piezoelectric polymers [J].
Fukada, E .
IEEE TRANSACTIONS ON ULTRASONICS FERROELECTRICS AND FREQUENCY CONTROL, 2000, 47 (06) :1277-1290