On positive definiteness of some functions

被引:45
作者
Zastavnyi, VP [1 ]
机构
[1] Donetsk State Univ, Dept Math, UA-340055 Donetsk, Ukraine
关键词
positive definite; Schoenberg problems; Fourier transform; Bochner theorem; Levy theorem; Hausdorff-Bernstein-Widder theorem;
D O I
10.1006/jmva.1999.1864
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
Let rho be a nonnegative homogeneous function on R-n. General structure of the set of numerical pails (delta, lambda), for which the function (1 - rho(lambda)(x))(+)(delta) is positive definite on R-n is investigated: a criterion for positive definiteness of this Function is given in terms of completely monotonic Functions: a connection of this problem with the Schoenberg problem on positive definiteness of the function exp( -p(lambda)(si) is found. We also obtain a general sufficient condition of Polya type for a function f(rho(x)) to be positive definite on R-n. (C) 2000 Academic Press.
引用
收藏
页码:55 / 81
页数:27
相关论文
共 44 条
[1]  
[Anonymous], RUSSIAN ACAD SCI DOK
[2]  
[Anonymous], Z WAHRSCHEINLICHKEIT
[3]  
[Anonymous], TH PROB MATH STAT
[4]  
[Anonymous], P BERK S MATH STAT P
[5]  
Askey R, 1973, Technical Report
[6]   l-1 summability of multiple Fourier integrals and positivity [J].
Berens, H ;
Xu, Y .
MATHEMATICAL PROCEEDINGS OF THE CAMBRIDGE PHILOSOPHICAL SOCIETY, 1997, 122 :149-172
[7]   Fejer means for multivariate Fourier series [J].
Berens, H ;
Xu, Y .
MATHEMATISCHE ZEITSCHRIFT, 1996, 221 (03) :449-465
[8]  
BRETAGNOLLE J, 1966, ANN I H POINCARE B, V2, P231
[9]   ON A-SYMMETRIC MULTIVARIATE DISTRIBUTIONS [J].
CAMBANIS, S ;
KEENER, R ;
SIMONS, G .
JOURNAL OF MULTIVARIATE ANALYSIS, 1983, 13 (02) :213-233
[10]  
CHRISTENSEN JPR, 1983, LECT NOTES MATH, V990, P47