Nonnegative solutions of a fractional sub-Laplacian differential inequality on Heisenberg group

被引:5
作者
Liu, Y. [1 ]
Wang, Y. [2 ]
Xiao, J. [3 ]
机构
[1] Univ Sci & Technol Beijing, Sch Math & Phys, Beijing 100083, Peoples R China
[2] North China Elect Power Univ, Dept Math & Phys, Beijing 102206, Peoples R China
[3] Mem Univ Newfoundland, Dept Math & Stat, St John, NF A1C 5S7, Canada
基金
加拿大自然科学与工程研究理事会; 中国国家自然科学基金; 北京市自然科学基金;
关键词
LIOUVILLE THEOREMS; POSITIVE SOLUTIONS; NORM INEQUALITIES; EXTENSION PROBLEM; EQUATIONS; SPACES; NONEXISTENCE;
D O I
10.4310/DPDE.2015.v12.n4.a4
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper we study nonnegative solutions of (dagger) vertical bar g vertical bar(gamma)(Hn) u(p) <= (-Delta(Hn)) (alpha/2) u on H-n, where H-n is the Heisenberg group; vertical bar.vertical bar H-n is the homogeneous norm; Delta(Hn) is the sub-Laplacian; (p, alpha, gamma) is an element of (1, infinity) x (0,2) x [0, (p-1)Q); and Q = 2n + 2 is the homogeneous dimension of Ifin. In particular, we prove that any nonnegative solution of (dagger) is zero if and only if p <= Q+gamma/Q-alpha.
引用
收藏
页码:379 / 403
页数:25
相关论文
共 32 条
[1]  
[Anonymous], 1994, Comm. Anal. Geom
[2]   Liouville theorems for semilinear equations on the Heisenberg group [J].
Birindelli, I ;
Dolcetta, IC ;
Cutri, A .
ANNALES DE L INSTITUT HENRI POINCARE-ANALYSE NON LINEAIRE, 1997, 14 (03) :295-308
[3]  
Birindelli I, 1999, COMMUN PART DIFF EQ, V24, P1875
[4]   An extension problem related to the fractional Laplacian [J].
Caffarelli, Luis ;
Silvestre, Luis .
COMMUNICATIONS IN PARTIAL DIFFERENTIAL EQUATIONS, 2007, 32 (7-9) :1245-1260
[5]   Some Liouville theorems for quasilinear elliptic inequalities [J].
Caristi, G. ;
Mitidieri, E. ;
Pohozaev, S. I. .
DOKLADY MATHEMATICS, 2009, 79 (01) :118-124
[6]   Liouville Theorems for Some Nonlinear Inequalities [J].
Caristi, G. ;
D'Ambrosio, L. ;
Mitidieri, E. .
PROCEEDINGS OF THE STEKLOV INSTITUTE OF MATHEMATICS, 2008, 260 (01) :90-111
[7]  
Christ M., 1990, Colloq. Math, V60/61, P601
[8]   A nonlinear Liouville theorem for fractional equations in the Heisenberg group [J].
Cinti, Eleonora ;
Tan, Jinggang .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2016, 433 (01) :434-454
[9]   EXTENSIONS OF HARDY SPACES AND THEIR USE IN ANALYSIS [J].
COIFMAN, RR ;
WEISS, G .
BULLETIN OF THE AMERICAN MATHEMATICAL SOCIETY, 1977, 83 (04) :569-645
[10]   Harnack inequality for fractional sub-Laplacians in Carnot groups [J].
Ferrari, Fausto ;
Franchi, Bruno .
MATHEMATISCHE ZEITSCHRIFT, 2015, 279 (1-2) :435-458