LQG optimal control of discrete stochastic systems under parametric and noise uncertainties

被引:18
作者
Hsiao, Feng-Hsiag
Xu, Sheng-Dong
Wu, Shih-Lin
Lee, Gwo-Chuan
机构
[1] Natl Univ Tainan, Dept Elect Engn, Tainan 700, Taiwan
[2] Natl Chiao Tung Univ, Dept Elect & Control Engn, Hsinchu 30010, Taiwan
[3] Chang Gung Univ, Dept Comp Sci & Informat Engn, Kwei San 333, Taoyuan Cty, Taiwan
[4] Natl United Univ, Dept Comp Sci & Informat Engn, Kung Ching Li 360, Miaoli, Taiwan
来源
JOURNAL OF THE FRANKLIN INSTITUTE-ENGINEERING AND APPLIED MATHEMATICS | 2006年 / 343卷 / 03期
关键词
LQG optimal control; minimax controller; Kalman filter;
D O I
10.1016/j.jfranklin.2006.02.038
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
In this paper, the linear-quadratic-Gaussian (LQG) optimal control problem is considered and a robust minimax controller composed of the Kalman filter and the optimal regulator is synthesized to guarantee the asymptotic stability of the discrete time-delay systems under both parametric uncertainties and uncertain noise covariances. Designed procedures are finally elaborated with an illustrative example. (c) 2006 The Franklin Institute. Published by Elsevier Ltd. All rights reserved.
引用
收藏
页码:279 / 294
页数:16
相关论文
共 20 条
[1]  
[Anonymous], 2003, STABILITY TIME DELAY
[2]   Optimal filtering for linear state delay systems [J].
Basin, M ;
Rodriguez-Gonzalez, J ;
Martinez-Zuñiga, R .
IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 2005, 50 (05) :684-690
[3]   A closed-form optimal control for linear systems with equal state and input delays [J].
Basin, M ;
Rodriguez-Gonzalez, J .
AUTOMATICA, 2005, 41 (05) :915-920
[4]  
Basin MV, 2005, DYNAM CONT DIS SER B, V12, P1
[5]  
BASIN MV, 2005, DYN CONTIN DISCRET I, V12, P663
[6]  
BASIN MV, 2004, P 5 IFAC WORKSH TIM, P175
[7]   LQG OPTIMAL-CONTROL SYSTEM-DESIGN UNDER PLANT PERTURBATION AND NOISE UNCERTAINTY - A STATE-SPACE APPROACH [J].
CHEN, BS ;
DONG, TY .
AUTOMATICA, 1989, 25 (03) :431-436
[8]  
Chen C.-T., 1984, LINEAR SYSTEM THEORY
[9]  
Desoer CA., 1975, FEEDBACK SYSTEMS INP
[10]  
Dugard L, 1997, Stability and Control of Time Delay Systems, V228