Asymptotic solution of nonlocal nonlinear reaction-diffusion Robin problems with two parameters

被引:1
作者
Mo, Jia-qi [1 ,2 ]
机构
[1] Anhui Normal Univ, Dept Math, Wuhu 241000, Anhui, Peoples R China
[2] Shanghai Univ SJTU, Inst E, Div Computat Sci, Shanghai 200240, Peoples R China
基金
中国国家自然科学基金;
关键词
reaction-diffusion system; singular perturbation; initial boundary value problem; MODEL;
D O I
10.1007/s10483-009-0806-x
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, the nonlocal nonlinear reaction-diffusion singularly perturbed problems with two parameters are studied. Using a singular perturbation method, the structure of the solutions to the problem is discussed in relation to two small parameters. The asymptotic solutions of the problem are given.
引用
收藏
页码:1003 / 1008
页数:6
相关论文
共 8 条
[1]  
De Jager E.M., 1996, The Theory of Singular Perturbations
[2]   Periodic traveling waves for diffusion equations with time delayed and non-local responding reaction [J].
Duehring, Dawn ;
Huang, Wenzhang .
JOURNAL OF DYNAMICS AND DIFFERENTIAL EQUATIONS, 2007, 19 (02) :457-477
[3]   Fast reaction limit and large time behavior of solutions to a nonlinear model of sulphation phenomena [J].
Guarguaglini, F. R. ;
Natalini, R. .
COMMUNICATIONS IN PARTIAL DIFFERENTIAL EQUATIONS, 2007, 32 (02) :163-189
[4]   Variational iteration method for solving perturbed mechanism of western boundary undercurrents in the Pacific [J].
Anhui Normal University, Wuhu 241000, China ;
不详 ;
不详 ;
不详 ;
不详 .
Chin. Phys., 2007, 4 (951-954) :951-954
[5]   Asymptotic solution of activator inhibitor systems for nonlinear reaction diffusion equations [J].
Mo, Jiaqi ;
Lin, Wantao .
JOURNAL OF SYSTEMS SCIENCE & COMPLEXITY, 2008, 21 (01) :119-128
[6]  
Mo JQ, 2007, PROG NAT SCI-MATER, V17, P230
[7]  
[Mo Jiaqi 莫嘉琪], 2006, [数学进展, Advances in Mathematics], V35, P75
[8]  
MO JQ, 1989, SCI CHINA SER A, V32, P1306