Accumulation, tissue distribution, and biochemical effects of polystyrene microplastics in the freshwater fish red tilapia (Oreochromis niloticus)

被引:544
作者
Ding, Jiannan [1 ,2 ]
Zhang, Shanshan [1 ]
Razanajatovo, Roger Mamitiana [1 ]
Zou, Hua [1 ,2 ]
Zhu, Wenbin [3 ]
机构
[1] Jiangnan Univ, Sch Environm & Civil Engn, Wuxi 214122, Peoples R China
[2] Jiangsu Collaborat Innovat Ctr Technol & Mat Wate, Suzhou 215009, Peoples R China
[3] Chinese Acad Fishery Sci, Freshwater Fisheries Res Ctr, Minist Agr, Key Lab Freshwater Fisheries & Germplasm Resource, Wuxi 214081, Peoples R China
关键词
Polystyrene microplastics; Freshwater; Red tilapia; Accumulation; Biomarker; GOBY POMATOSCHISTUS-MICROPS; GREAT-LAKES; BIOMARKER RESPONSES; PLASTIC DEBRIS; DAPHNIA-MAGNA; SEDIMENTS; TOXICITY; JUVENILES; POLLUTION; INGESTION;
D O I
10.1016/j.envpol.2018.03.001
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
While the presence of microplastics (MPs) in marine environments has been detected worldwide, the importance of MPs pollution in freshwater environments has also been emphasized in recent years. However, the body of knowledge regarding the biological effects of MPs on freshwater organisms is still much more limited than on marine organisms. The aim of the present study was to evaluate the accumulation and tissue distribution of MPs in the freshwater fish red tilapia (Oreochromis niloticus), as well as the biochemical effects of MPs on O. niloticus. During 14 days of exposure to 0.1 sm polystyrene-MPs at concentrations of 1, 10, and 100 mu g L-1, the MPs concentrations in various tissues of O. niloticus generally increased over time following the order gut > gills > liver approximate to brain. Moreover, the acetylcholinesterase (AChE) activity in the fish brain was inhibited by MPs exposure, with a maximum inhibition rate of 37.7%, suggesting the potential neurotoxicity of MPs to freshwater fish. The activities of cytochrome P450 (CYP) enzymes [7-ethoxyresorufin O-deethylase (EROD) and 7-benzyloxy-4-trifluoromethyl-coumarin O-dibenzyloxylase (BFCOD)] in the fish liver exhibited clear temporal variabilities, with significant decreases followed by elevations compared to the control. The alterations of the EROD and BFCOD activities indicate the potential involvement of CYP enzymes for the metabolism of MPs. The activity of anti oxidative enzyme superoxide dismutase (SOD) in the liver was significantly induced throughout the exposure period, while the malondialdehyde (MDA) content did not vary with MPs exposure, suggesting that the antioxidative enzymatic system in O. niloticus could prevent oxidative damage. These results highlight the ingestion and accumulation of MPs in different tissues of freshwater fish, which lead to perturbations in fish biological systems and should be considered in environmental risk assessment. (C) 2018 Elsevier Ltd. All rights reserved.
引用
收藏
页码:1 / 9
页数:9
相关论文
共 60 条
[1]  
[Anonymous], 1999, Biostatistical Analysis
[2]   Responses of Hyalella azteca to acute and chronic microplastic exposures [J].
Au, Sarah Y. ;
Bruce, Terri F. ;
Bridges, William C. ;
Klaine, Stephen J. .
ENVIRONMENTAL TOXICOLOGY AND CHEMISTRY, 2015, 34 (11) :2564-2572
[3]   Pollutants bioavailability and toxicological risk from microplastics to marine mussels [J].
Avio, Carlo Giacomo ;
Gorbi, Stefania ;
Milan, Massimo ;
Benedetti, Maura ;
Fattorini, Daniele ;
d'Errico, Giuseppe ;
Pauletto, Marianna ;
Bargelloni, Luca ;
Regoli, Francesco .
ENVIRONMENTAL POLLUTION, 2015, 198 :211-222
[4]   Plastic Debris in 29 Great Lakes Tributaries: Relations to Watershed Attributes and Hydrology [J].
Baldwin, Austin K. ;
Corsi, Steven R. ;
Mason, Sherri A. .
ENVIRONMENTAL SCIENCE & TECHNOLOGY, 2016, 50 (19) :10377-10385
[5]   Transfer of benzo[a]pyrene from microplastics to Artemia nauplii and further to zebrafish via a trophic food web experiment: CYP1A induction and visual tracking of persistent organic pollutants [J].
Batel, Annika ;
Linti, Frederic ;
Scherer, Martina ;
Erdinger, Lothar ;
Braunbeck, Thomas .
ENVIRONMENTAL TOXICOLOGY AND CHEMISTRY, 2016, 35 (07) :1656-1666
[6]   First evidence of microplastics in the African Great Lakes: Recovery from Lake Victoria Nile perch and Nile tilapia [J].
Biginagwa, Fares John ;
Mayoma, Bahati Sosthenes ;
Shashoua, Yvonne ;
Syberg, Kristian ;
Khan, Farhan R. .
JOURNAL OF GREAT LAKES RESEARCH, 2016, 42 (01) :146-149
[7]   Microplastics affect assimilation efficiency in the freshwater amphipod Gammarus fossarum [J].
Blarer, Pascal ;
Burkhardt-Holm, Patricia .
ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH, 2016, 23 (23) :23522-23532
[8]   Ingested microscopic plastic translocates to the circulatory system of the mussel, Mytilus edulis (L.) [J].
Browne, Mark A. ;
Dissanayake, Awantha ;
Galloway, Tamara S. ;
Lowe, David M. ;
Thompson, Richard C. .
ENVIRONMENTAL SCIENCE & TECHNOLOGY, 2008, 42 (13) :5026-5031
[9]   Accumulation of Microplastic on Shorelines Woldwide: Sources and Sinks [J].
Browne, Mark Anthony ;
Crump, Phillip ;
Niven, Stewart J. ;
Teuten, Emma ;
Tonkin, Andrew ;
Galloway, Tamara ;
Thompson, Richard .
ENVIRONMENTAL SCIENCE & TECHNOLOGY, 2011, 45 (21) :9175-9179
[10]  
Cachot J, 2016, MICRO2016 FATE IMPAC, P140