Diagonalizability and symmetrizability of Sobolev-type bilinear forms: A combinatorial approach

被引:3
作者
Kim, H. K. [1 ]
Kwon, K. H. [2 ]
Littlejohn, L. L. [3 ]
Yoon, G. J. [4 ]
机构
[1] Seoul Natl Univ, Dept Math Sci, Seoul 151747, South Korea
[2] Korea Adv Inst Sci & Technol, Dept Math Sci, Taejon 305701, South Korea
[3] Baylor Univ, Dept Math, Waco, TX 76798 USA
[4] Ewha W Univ, Inst Math Sci, Seoul 120750, South Korea
基金
新加坡国家研究基金会;
关键词
Sobolev-type bilinear form; Diagonalizability; Symmetrizability; MOMENT PROBLEM; ORTHOGONAL POLYNOMIALS;
D O I
10.1016/j.laa.2014.07.037
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In an earlier paper, Kwon, Littlejohn and Yoon characterized symmetric Sobolev bilinear forms and showed that they have, like symmetric matrices, a diagonal representation. In this paper, we present a new proof of one of their main results by interpreting the coefficients in the diagonal representation of a Sobolev-type bilinear form from a combinatorial point of view. We view this as an improvement over the original proof which relied on mathematical induction. (C) 2014 Elsevier Inc. All rights reserved.
引用
收藏
页码:111 / 124
页数:14
相关论文
共 18 条
[1]  
Alvarez M., 1996, LECT NOTES PURE APPL, V199, P343
[2]  
[Anonymous], 2004, NUMER MATH SCI COMPU
[3]  
Blankenagel J., 1971, THESIS U KOLN
[4]  
Boas Jr RP., 1939, Bull Am Math Soc, V45, P399, DOI DOI 10.1090/BULL/1939-45-06
[5]  
Chihara Theodore S, 2011, An introduction to orthogonal polynomials
[6]  
Danese A.E., 1976, REND SEM MAT U POLIT, V35, P1
[8]   Ghost matrices and a characterization of symmetric Sobolev bilinear forms [J].
Kwon, K. H. ;
Littlejohn, Lance L. ;
Yoon, G. J. .
LINEAR ALGEBRA AND ITS APPLICATIONS, 2009, 431 (1-2) :104-119
[9]   Sobolev orthogonal polynomials and second-order differential equations [J].
Kwon, KH ;
Littlejohn, LL .
ROCKY MOUNTAIN JOURNAL OF MATHEMATICS, 1998, 28 (02) :547-594
[10]  
Lay D.C., 2003, Linear Algebra and Its Applications