Development of artificial intelligence system for quality control of photo documentation in esophagogastroduodenoscopy

被引:28
作者
Choi, Seong Ji [1 ]
Khan, Mohammad Azam [2 ]
Choi, Hyuk Soon [3 ]
Choo, Jaegul [2 ]
Lee, Jae Min [3 ]
Kwon, Soonwook [4 ]
Keum, Bora [3 ]
Chun, Hoon Jai [3 ]
机构
[1] Hanyang Univ, Coll Med, Dept Internal Med, Seoul, South Korea
[2] Korea Adv Inst Sci & Technol, Grad Sch Artificial Intelligence, Daejeon, South Korea
[3] Korea Univ, Coll Med, Dept Internal Med, Div Gastroenterol & Hepatol, Seoul, South Korea
[4] Catholic Univ Daegu, Sch Med, Dept Anat, Daegu, South Korea
来源
SURGICAL ENDOSCOPY AND OTHER INTERVENTIONAL TECHNIQUES | 2022年 / 36卷 / 01期
基金
新加坡国家研究基金会;
关键词
Endoscopy; Esophagogastroduodenoscopy; Artificial intelligence; Deep learning; Quality control; COMPUTER-AIDED DIAGNOSIS; GASTRIC-CANCER; GASTROINTESTINAL ENDOSCOPY; GUIDELINES;
D O I
10.1007/s00464-020-08236-6
中图分类号
R61 [外科手术学];
学科分类号
摘要
Background Esophagogastroduodenoscopy (EGD) is generally a safe procedure, but adverse events often occur. This highlights the necessity of the quality control of EGD. Complete visualization and photo documentation of upper gastrointestinal (UGI) tracts are important measures in quality control of EGD. To evaluate these measures in large scale, we developed an AI-driven quality control system for EGD through convolutional neural networks (CNNs) using archived endoscopic images. Methods We retrospectively collected and labeled images from 250 EGD procedures, a total of 2599 images from eight locations of the UGI tract, using the European Society of Gastrointestinal Endoscopy (ESGE) photo documentation methods. The label confirmed by five experts was considered the gold standard. We developed a CNN model for multi-class classification of EGD images to one of the eight locations and binary classification of each EGD procedure based on its completeness. Results Our CNN model successfully classified the EGD images into one of the eight regions of UGI tracts with 97.58% accuracy, 97.42% sensitivity, 99.66% specificity, 97.50% positive predictive value (PPV), and 99.66% negative predictive value (NPV). Our model classified the completeness of EGD with 89.20% accuracy, 89.20% sensitivity, 100.00% specificity, 100.00% PPV, and 64.94% NPV. We analyzed the credibility of our model using a probability heatmap. Conclusions We constructed a CNN model that could be used in the quality control of photo documentation in EGD. Our model needs further validation with a large dataset, and we expect our model to help both endoscopists and patients by improving the quality of EGD procedures.
引用
收藏
页码:57 / 65
页数:9
相关论文
共 28 条
[1]   Adverse events of upper GI endoscopy [J].
Ben-Menachem, Tamir ;
Decker, G. Anton ;
Early, Dayna S. ;
Evans, Jerry ;
Fanelli, Robert D. ;
Fisher, Deborah A. ;
Fisher, Laurel ;
Fukami, Norio ;
Hwang, Joo Ha ;
Ikenberry, Steven O. ;
Jain, Rajeev ;
Jue, Terry L. ;
Khan, Khalid M. ;
Krinsky, Mary L. ;
Malpas, Phyllis M. ;
Maple, John T. ;
Sharaf, Ravi N. ;
Dominitz, Jason A. ;
Cash, Brooks D. .
GASTROINTESTINAL ENDOSCOPY, 2012, 76 (04) :707-718
[2]   Performance measures for upper gastrointestinal endoscopy: a European Society of Gastrointestinal Endoscopy (ESGE) Quality Improvement Initiative [J].
Bisschops, Raf ;
Areia, Miguel ;
Coron, Emmanuel ;
Dobru, Daniela ;
Kaskas, Bernd ;
Kuvaev, Roman ;
Pech, Oliver ;
Ragunath, Krish ;
Weusten, Bas ;
Familiari, Pietro ;
Domagk, Dirk ;
Valori, Roland ;
Kaminski, Michal F. ;
Spada, Cristiano ;
Bretthauer, Michael ;
Bennett, Cathy ;
Senore, Carlo ;
Dinis-Ribeiro, Mario ;
Rutter, Matthew D. .
ENDOSCOPY, 2016, 48 (09) :843-864
[3]   Artificial intelligence in medicine: current trends and future possibilities [J].
Buch, Varun H. ;
Ahmed, Irfan ;
Maruthappu, Mahiben .
BRITISH JOURNAL OF GENERAL PRACTICE, 2018, 68 (668) :143-144
[4]   Comparing blind spots of unsedated ultrafine, sedated, and unsedated conventional gastroscopy with and without artificial intelligence: a prospective, single-blind, 3-parallel-group, randomized, single-center trial [J].
Chen, Di ;
Wu, Lianlian ;
Li, Yanxia ;
Zhang, Jun ;
Liu, Jun ;
Huang, Li ;
Jiang, Xiaoda ;
Huang, Xu ;
Mu, Ganggang ;
Hu, Shan ;
Hu, Xiao ;
Gong, Dexin ;
He, Xinqi ;
Yu, Honggang .
GASTROINTESTINAL ENDOSCOPY, 2020, 91 (02) :332-+
[5]   Accurate Classification of Diminutive Colorectal Polyps Using Computer-Aided Analysis [J].
Chen, Peng-Jen ;
Lin, Meng-Chiung ;
Lai, Mei-Ju ;
Lin, Jung-Chun ;
Lu, Henry Horng-Shing ;
Tseng, Vincent S. .
GASTROENTEROLOGY, 2018, 154 (03) :568-575
[6]   Screening for Gastric Cancer: The Usefulness of Endoscopy [J].
Choi, Kui Son ;
Suh, Mina .
CLINICAL ENDOSCOPY, 2014, 47 (06) :490-496
[7]   Performance of Different Gastric Cancer Screening Methods in Korea: A Population-Based Study [J].
Choi, Kui Son ;
Jun, Jae Kwan ;
Park, Eun-Cheol ;
Park, Sohee ;
Jung, Kyu Won ;
Han, Mi Ah ;
Choi, Il Ju ;
Lee, Hoo-Yeon .
PLOS ONE, 2012, 7 (11)
[8]   A survey on Barrett's esophagus analysis using machine learning [J].
de Souza Jr, Luis A. ;
Palm, Christoph ;
Mendel, Robert ;
Hook, Christian ;
Ebigbo, Alanna ;
Probst, Andreas ;
Messmann, Helmut ;
Weber, Silke ;
Papa, Joao P. .
COMPUTERS IN BIOLOGY AND MEDICINE, 2018, 96 :203-213
[9]   Development and Validation of a Deep Learning Algorithm for Detection of Diabetic Retinopathy in Retinal Fundus Photographs [J].
Gulshan, Varun ;
Peng, Lily ;
Coram, Marc ;
Stumpe, Martin C. ;
Wu, Derek ;
Narayanaswamy, Arunachalam ;
Venugopalan, Subhashini ;
Widner, Kasumi ;
Madams, Tom ;
Cuadros, Jorge ;
Kim, Ramasamy ;
Raman, Rajiv ;
Nelson, Philip C. ;
Mega, Jessica L. ;
Webster, R. .
JAMA-JOURNAL OF THE AMERICAN MEDICAL ASSOCIATION, 2016, 316 (22) :2402-2410
[10]   Update version of the Japanese Guidelines for Gastric Cancer Screening [J].
Hamashima, Chisato .
JAPANESE JOURNAL OF CLINICAL ONCOLOGY, 2018, 48 (07) :673-683