Classical Capacities of Compound and Averaged Quantum Channels

被引:40
作者
Bjelakovic, Igor [1 ,2 ]
Boche, Holger [1 ,2 ]
机构
[1] Tech Univ Berlin, Heinrich Hertz Chair Mobile Commun, D-10587 Berlin, Germany
[2] Tech Univ Berlin, Inst Math, D-10623 Berlin, Germany
关键词
Averaged quantum channels; capacity; coding theorem; compound quantum channels; universal quantum codes; RELATIVE ENTROPY; CODING THEOREM; STRONG CONVERSE; ASYMPTOTICS; PROBABILITY; INFORMATION;
D O I
10.1109/TIT.2009.2021375
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
We determine the capacity of compound classical-quantum channels. As a consequence, we obtain the capacity formula for the averaged classical-quantum channels. The capacity result for compound channels demonstrates, as in the classical setting, the existence of reliable universal classical-quantum codes in scenarios where the only a priori information about the channel used for the transmission of information is that it belongs to a given set of memoryless classical-quantum channels. Our approach is based on a universal classical approximation of the quantum relative entropy which in turn relies on a universal hypothesis testing result.
引用
收藏
页码:3360 / 3374
页数:15
相关论文
共 25 条
[1]   WEAK CAPACITY OF AVERAGED CHANNELS [J].
AHLSWEDE, R .
ZEITSCHRIFT FUR WAHRSCHEINLICHKEITSTHEORIE UND VERWANDTE GEBIETE, 1968, 11 (01) :61-&
[2]  
AHLSWEDE R, 1967, P BOLYAI C INFORM TH, P35
[3]  
[Anonymous], 1981, Information Theory: Coding Theorems for Discrete Memoryless Systems
[4]   A quantum version of Sanov's theorem [J].
Bjelakovic, I ;
Deuschel, JD ;
Krüger, T ;
Seiler, R ;
Siegmund-Schultze, R ;
Szkola, A .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2005, 260 (03) :659-671
[5]   THE CAPACITY OF A CLASS OF CHANNELS [J].
BLACKWELL, D ;
BREIMAN, L ;
THOMASIAN, AJ .
ANNALS OF MATHEMATICAL STATISTICS, 1959, 30 (04) :1229-1241
[6]   The coding theorem for a class of quantum channels with long-term memory [J].
Datta, Nilanjana ;
Dorlas, Tony C. .
JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2007, 40 (28) :8147-8164
[7]   FURTHER RESULTS ON THE RELATIVE ENTROPY [J].
DONALD, MJ .
MATHEMATICAL PROCEEDINGS OF THE CAMBRIDGE PHILOSOPHICAL SOCIETY, 1987, 101 :363-373
[8]   CONTINUITY PROPERTY OF ENTROPY DENSITY FOR SPIN-LATTICE SYSTEMS [J].
FANNES, M .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1973, 31 (04) :291-294
[9]  
HASTINGS MB, 1972, ARXIV08093972
[10]   General formulas for capacity of classical-quantum channels [J].
Hayashi, M ;
Nagaoka, H .
IEEE TRANSACTIONS ON INFORMATION THEORY, 2003, 49 (07) :1753-1768