Geometric Distance Between Positive Definite Matrices of Different Dimensions

被引:14
作者
Lim, Lek-Heng [1 ]
Sepulchre, Rodolphe [2 ]
Ye, Ke [3 ]
机构
[1] Univ Chicago, Dept Stat, Computat & Appl Math Initiat, Chicago, IL 60637 USA
[2] Univ Cambridge, Dept Engn, Cambridge CB2 1PZ, England
[3] Chinese Acad Sci, Acad Math & Syst Sci, KLMM, Beijing 100190, Peoples R China
基金
国家重点研发计划; 欧洲研究理事会; 美国国家科学基金会; 中国国家自然科学基金;
关键词
Riemannian manifold; geodesic distance; positive definite matrices; covariance matrices; ellipsoids; RIEMANNIAN GEOMETRY;
D O I
10.1109/TIT.2019.2913874
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
We show how the geodesic distance on S-++(n), the cone of n x n real symmetric or complex Hermitian positive definite matrices regarded as a Riemannian manifold, may be used to naturally define a distance between two such matrices of different dimensions. Given that S-++(n) also parameterizes n-dimensional ellipsoids, inner products on R-n, and n x n covariances of nondegenerate probability distributions, this gives us a natural way to define a geometric distance between a pair of such objects of different dimensions.
引用
收藏
页码:5401 / 5405
页数:5
相关论文
共 15 条
[1]  
[Anonymous], 1985, Matrix Analysis
[2]  
[Anonymous], 2008, P 2008 IEEE RAD C RO
[3]  
Bhatia R, 2007, PRINC SER APPL MATH, P1
[4]   RIEMANNIAN METRIC AND GEOMETRIC MEAN FOR POSITIVE SEMIDEFINITE MATRICES OF FIXED RANK [J].
Bonnabel, Silvere ;
Sepulchre, Rodolphe .
SIAM JOURNAL ON MATRIX ANALYSIS AND APPLICATIONS, 2009, 31 (03) :1055-1070
[5]  
Boyd Stephen P., 2014, Convex Optimization
[6]   Riemannian geometry for the statistical analysis of diffusion tensor data [J].
Fletcher, P. Thomas ;
Joshi, Sarang .
SIGNAL PROCESSING, 2007, 87 (02) :250-262
[7]  
Laub Alan J, 2005, Matrix analysis for scientists and engineers, V91
[8]   The geometric mean, matrices, metrics, and more [J].
Lawson, JD ;
Lim, YD .
AMERICAN MATHEMATICAL MONTHLY, 2001, 108 (09) :797-812
[9]   The Riemannian Geometry of the Space of Positive-Definite Matrices and Its Application to the Regularization of Positive-Definite Matrix-Valued Data [J].
Moakher, Maher ;
Zerai, Mourad .
JOURNAL OF MATHEMATICAL IMAGING AND VISION, 2011, 40 (02) :171-187
[10]   On the Riemannian geometry defined by self-concordant barriers and interior-point methods [J].
Nesterov, YE ;
Todd, MJ .
FOUNDATIONS OF COMPUTATIONAL MATHEMATICS, 2002, 2 (04) :333-361