PARAMETER ESTIMATION BY IMPLICIT SAMPLING

被引:17
|
作者
Morzfeld, Matthias [1 ,2 ]
Tu, Xuemin [3 ]
Wilkening, Jon [1 ,2 ]
Chorin, Alexandre J. [1 ,2 ]
机构
[1] Univ Calif Berkeley, Dept Math, Berkeley, CA 94720 USA
[2] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Berkeley, CA 94720 USA
[3] Univ Kansas, Dept Math, Lawrence, KS 66045 USA
基金
美国国家科学基金会;
关键词
importance sampling; implicit sampling; Markov chain Monte Carlo; STOCHASTIC NEWTON MCMC; INVERSE PROBLEMS; PARTICLE FILTERS; NOISE;
D O I
10.2140/camcos.2015.10.205
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Implicit sampling is a weighted sampling method that is used in data assimilation to sequentially update state estimates of a stochastic model based on noisy and incomplete data. Here we apply implicit sampling to sample the posterior probability density of parameter estimation problems. The posterior probability combines prior information about the parameter with information from a numerical model, e.g., a partial differential equation (PDE), and noisy data. The result of our computations are parameters that lead to simulations that are compatible with the data. We demonstrate the usefulness of our implicit sampling algorithm with an example from subsurface flow. For an efficient implementation, we make use of multiple grids, BFGS optimization coupled to adjoint equations, and Karhunen-Loeve expansions for dimensional reduction. Several difficulties of Markov chain Monte Carlo methods, e.g., estimation of burn-in times or correlations among the samples, are avoided because the implicit samples are independent.
引用
收藏
页码:205 / 225
页数:21
相关论文
共 50 条
  • [21] An implicit least squares algorithm for nonlinear rational model parameter estimation
    Zhu, QM
    APPLIED MATHEMATICAL MODELLING, 2005, 29 (07) : 673 - 689
  • [22] Population Pharmacodynamic Parameter Estimation from Sparse Sampling: Effect of Sigmoidicity on Parameter Estimates
    Sudhakar M. Pai
    Suzette Girgis
    Vijay K. Batra
    Ihab G. Girgis
    The AAPS Journal, 2009, 11 : 535 - 540
  • [23] Population Pharmacodynamic Parameter Estimation from Sparse Sampling: Effect of Sigmoidicity on Parameter Estimates
    Pai, Sudhakar M.
    Girgis, Suzette
    Batra, Vijay K.
    Girgis, Ihab G.
    AAPS JOURNAL, 2009, 11 (03): : 535 - 540
  • [24] ON CONTINUOUS AND DISCRETE SAMPLING FOR PARAMETER ESTIMATION IN MARKOVIAN SWITCHING DIFFUSIONS
    Zhen, Yuhang
    Xi, Fubao
    NUMERICAL ALGEBRA CONTROL AND OPTIMIZATION, 2024,
  • [25] Estimation of a parameter of bivariate Pareto distribution by ranked set sampling
    Chacko, Manoj
    Thomas, P. Yageen
    JOURNAL OF APPLIED STATISTICS, 2007, 34 (06) : 703 - 714
  • [26] The relationship between information, sampling rates, and parameter estimation models
    Emery, AF
    Blackwell, BF
    Dowding, KJ
    JOURNAL OF HEAT TRANSFER-TRANSACTIONS OF THE ASME, 2002, 124 (06): : 1192 - 1199
  • [27] Parameter estimation for random dynamical systems using slice sampling
    Hatjispyros, S. J.
    Nicoleris, Theodoros
    Walker, Stephen G.
    PHYSICA A-STATISTICAL MECHANICS AND ITS APPLICATIONS, 2007, 381 (1-2) : 71 - 81
  • [28] Parameter Estimation of a Synchronous Generator at Moderate Measurement Sampling Rate
    Mitra, Arindam
    Mohapatra, Abheejeet
    Chakrabarti, Saikat
    PROCEEDINGS OF 2019 IEEE PES INNOVATIVE SMART GRID TECHNOLOGIES EUROPE (ISGT-EUROPE), 2019,
  • [29] Parameter estimation for the Pareto distribution based on ranked set sampling
    Wenshu Qian
    Wangxue Chen
    Xiaofang He
    Statistical Papers, 2021, 62 : 395 - 417
  • [30] Parameter Estimation for Interrupted Sampling Repeater Jamming Based on ADMM
    Wang, Chaoyu
    Hu, Wanwan
    Geng, Zhe
    Zhang, Jindong
    Zhu, Daiyin
    SENSORS, 2021, 21 (24)