PARAMETER ESTIMATION BY IMPLICIT SAMPLING

被引:17
作者
Morzfeld, Matthias [1 ,2 ]
Tu, Xuemin [3 ]
Wilkening, Jon [1 ,2 ]
Chorin, Alexandre J. [1 ,2 ]
机构
[1] Univ Calif Berkeley, Dept Math, Berkeley, CA 94720 USA
[2] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Berkeley, CA 94720 USA
[3] Univ Kansas, Dept Math, Lawrence, KS 66045 USA
基金
美国国家科学基金会;
关键词
importance sampling; implicit sampling; Markov chain Monte Carlo; STOCHASTIC NEWTON MCMC; INVERSE PROBLEMS; PARTICLE FILTERS; NOISE;
D O I
10.2140/camcos.2015.10.205
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Implicit sampling is a weighted sampling method that is used in data assimilation to sequentially update state estimates of a stochastic model based on noisy and incomplete data. Here we apply implicit sampling to sample the posterior probability density of parameter estimation problems. The posterior probability combines prior information about the parameter with information from a numerical model, e.g., a partial differential equation (PDE), and noisy data. The result of our computations are parameters that lead to simulations that are compatible with the data. We demonstrate the usefulness of our implicit sampling algorithm with an example from subsurface flow. For an efficient implementation, we make use of multiple grids, BFGS optimization coupled to adjoint equations, and Karhunen-Loeve expansions for dimensional reduction. Several difficulties of Markov chain Monte Carlo methods, e.g., estimation of burn-in times or correlations among the samples, are avoided because the implicit samples are independent.
引用
收藏
页码:205 / 225
页数:21
相关论文
共 43 条
  • [1] A tutorial on particle filters for online nonlinear/non-Gaussian Bayesian tracking
    Arulampalam, MS
    Maskell, S
    Gordon, N
    Clapp, T
    [J]. IEEE TRANSACTIONS ON SIGNAL PROCESSING, 2002, 50 (02) : 174 - 188
  • [2] Implicit Particle Methods and Their Connection with Variational Data Assimilation
    Atkins, Ethan
    Morzfeld, Matthias
    Chorin, Alexandre J.
    [J]. MONTHLY WEATHER REVIEW, 2013, 141 (06) : 1786 - 1803
  • [3] Bear J., 1987, THEORY APPL TRANSPOR, V2
  • [4] Bengtsson T., 2008, IMS COLLECTIONS PROB, V2, P316, DOI 10.1214/193940307000000518
  • [5] BICKEL 4P., 2008, PUSHING LIMITS CONT, V3, P318, DOI DOI 10.1214/074921708000000228
  • [6] Braess D., 1997, FINITE ELEMENTS THEO
  • [7] Bui-Thanh T., 2013, SIAM J SCI COMPUT, V35, pA2494, DOI DOI 10.1137/12089586X
  • [8] Chorin A. J., 2013, TEXTS APPL MATH, V58
  • [9] IMPLICIT PARTICLE FILTERS FOR DATA ASSIMILATION
    Chorin, Alexandre
    Morzfeld, Matthias
    Tu, Xuemin
    [J]. COMMUNICATIONS IN APPLIED MATHEMATICS AND COMPUTATIONAL SCIENCE, 2010, 5 (02) : 221 - 240
  • [10] Conditions for successful data assimilation
    Chorin, Alexandre J.
    Morzfeld, Matthias
    [J]. JOURNAL OF GEOPHYSICAL RESEARCH-ATMOSPHERES, 2013, 118 (20) : 11522 - 11533