High Intensity, Multimodality and Incoherence: Grand Challenges in the Analysis of Data for Health-Enabling Technologies

被引:2
作者
Kohlmann, Martin [1 ,2 ]
Gietzelt, Matthias [1 ,2 ]
Marschollek, Michael [1 ,2 ]
Song, Bianying [1 ,2 ]
Wolf, Klaus-Hendrik [1 ,2 ]
Haux, Reinhold [1 ,2 ]
机构
[1] Tech Univ Carolo Wilhelmina Braunschweig, Inst Technol, Peter L Reichertz Inst Med Informat, Braunschweig, Germany
[2] Hannover Med Sch, Hannover, Germany
来源
MEDINFO 2013: PROCEEDINGS OF THE 14TH WORLD CONGRESS ON MEDICAL AND HEALTH INFORMATICS, PTS 1 AND 2 | 2013年 / 192卷
关键词
health-enabling technologies; SNOCAP-HET; highly intensive; multimodal and incoherent data;
D O I
10.3233/978-1-61499-289-9-967
中图分类号
R19 [保健组织与事业(卫生事业管理)];
学科分类号
摘要
When working with health-enabling technologies, researchers all over the world usually have to analyze highly intensive, multimodal and incoherent data. We explain that there is a lack of systematization within the set of methods of analysis suitable for these data. As a first step towards a methodology in this context, we present the Systematic Nomenclature for Contexts, Analysis Methods and Problems in Health-Enabling Technologies (SNOCAP-HET).
引用
收藏
页码:967 / 967
页数:1
相关论文
共 2 条
[1]  
Kohlmann M, 2013, PREPRINT
[2]  
Kohlmann M, 2013, PROPOSAL MET 1 UNPUB