Loading and compression of a single two-dimensional Bose gas in an optical accordion

被引:46
作者
Ville, J. L. [1 ]
Bienaime, T. [2 ,3 ]
Saint-Jalm, R. [1 ]
Corman, L. [4 ]
Aidelsburger, M. [1 ]
Chomaz, L. [5 ]
Kleinlein, K. [1 ]
Perconte, D. [6 ]
Nascimbene, S. [1 ]
Dalibard, J. [1 ]
Beugnon, J. [1 ]
机构
[1] UPMC Sorbonne Univ, ENS PSL Res Univ, CNRS, Lab Kastler Brossel,Coll France, 11 Pl Marcelin Berthelot, F-75005 Paris, France
[2] Univ Trento, INO CNR BEC Ctr, I-38123 Povo, Italy
[3] Univ Trento, Dipartimento Fis, I-38123 Povo, Italy
[4] ETH, Inst Quantum Elect, CH-8093 Zurich, Switzerland
[5] Univ Innsbruck, Inst Expt Phys, Tech Str 25, A-6020 Innsbruck, Austria
[6] Univ Paris Saclay, Univ Paris Sud, Unite Mixte Phys, CNRS,Thales, F-91767 Palaiseau, France
关键词
ATOMIC GASES; SYSTEMS; PHYSICS;
D O I
10.1103/PhysRevA.95.013632
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
The experimental realization of two-dimensional (2D) Bose gases with a tunable interaction strength is an important challenge for the study of ultracold quantum matter. Here we report on the realization of an optical accordion creating a lattice potential with a spacing that can be dynamically tuned between 11 and 2 mu m. We show that we can load ultracold Rb-87 atoms into a single node of this optical lattice in the large spacing configuration and then decrease nearly adiabatically the spacing to reach a strong harmonic confinement with frequencies larger than omega(z)/2 pi = 10 kHz. Atoms are trapped in an additional flat-bottom in-plane potential that is shaped with a high resolution. By combining these tools we create custom-shaped uniform 2D Bose gases with tunable confinement along the transverse direction and hence with a tunable interaction strength.
引用
收藏
页数:7
相关论文
共 26 条
[1]   Ultracold atoms in an optical lattice with dynamically variable periodicity [J].
Al-Assam, S. ;
Williams, R. A. ;
Foot, C. J. .
PHYSICAL REVIEW A, 2010, 82 (02)
[2]   A quantum gas microscope for detecting single atoms in a Hubbard-regime optical lattice [J].
Bakr, Waseem S. ;
Gillen, Jonathon I. ;
Peng, Amy ;
Foelling, Simon ;
Greiner, Markus .
NATURE, 2009, 462 (7269) :74-U80
[3]  
BEREZINSKII VL, 1972, SOV PHYS JETP-USSR, V34, P610
[4]   Many-body physics with ultracold gases [J].
Bloch, Immanuel ;
Dalibard, Jean ;
Zwerger, Wilhelm .
REVIEWS OF MODERN PHYSICS, 2008, 80 (03) :885-964
[5]   Emergence of coherence via transverse condensation in a uniform quasi-two-dimensional Bose gas [J].
Chomaz, Lauriane ;
Corman, Laura ;
Bienaime, Tom ;
Desbuquois, Remi ;
Weitenberg, Christof ;
Nascimbene, Sylvain ;
Beugnon, Jerome ;
Dalibard, Jean .
NATURE COMMUNICATIONS, 2015, 6
[6]   Observation of a 2D Bose Gas: From Thermal to Quasicondensate to Superfluid [J].
Clade, P. ;
Ryu, C. ;
Ramanathan, A. ;
Helmerson, K. ;
Phillips, W. D. .
PHYSICAL REVIEW LETTERS, 2009, 102 (17)
[7]   Rapidly rotating atomic gases [J].
Cooper, N. R. .
ADVANCES IN PHYSICS, 2008, 57 (06) :539-616
[8]   Quench-Induced Supercurrents in an Annular Bose Gas [J].
Corman, L. ;
Chomaz, L. ;
Bienaime, T. ;
Desbuquois, R. ;
Weitenberg, C. ;
Nascimbene, S. ;
Dalibard, J. ;
Beugnon, J. .
PHYSICAL REVIEW LETTERS, 2014, 113 (13)
[9]   Optics and interferometry with atoms and molecules [J].
Cronin, Alexander D. ;
Schmiedmayer, Joerg ;
Pritchard, David E. .
REVIEWS OF MODERN PHYSICS, 2009, 81 (03) :1051-1129
[10]   Colloquium: Artificial gauge potentials for neutral atoms [J].
Dalibard, Jean ;
Gerbier, Fabrice ;
Juzeliunas, Gediminas ;
Oehberg, Patrik .
REVIEWS OF MODERN PHYSICS, 2011, 83 (04) :1523-1543