Periodic billiard orbits of self-similar Sierpinski carpets

被引:7
作者
Chen, Joe P. [1 ]
Niemeyer, Robert G. [2 ]
机构
[1] Univ Connecticut, Dept Math, Storrs, CT 06269 USA
[2] Univ New Mexico, Dept Math & Stat, Albuquerque, NM 87131 USA
基金
美国国家科学基金会;
关键词
Fractal billiard; Polygonal billiard; Rational (polygonal) billiard; Law of Reflection; Unfolding process; Flat surface; Translation surface; Geodesic flow; Billiard flow; Iterated function system and attractor; Self-similar set; Fractal; Prefractal approximations; Self-similar Sierpinski carpet billiard; Prefractal rational billiard approximations; Sequence of compatible orbits (Eventually) constant sequences of compatible orbits; Footprints; RECURRENCE; FLOWS;
D O I
10.1016/j.jmaa.2014.03.001
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We identify a collection of periodic billiard orbits in a self-similar Sierpinski carpet billiard table Omega(S-a). Based on our refinement of the result of Durand-Cartagena and Tyson regarding nontrivial line segments in S., we construct what is called an eventually constant sequence of compatible periodic orbits of prefractal Sierpinski carpet billiard tables, Omega(S-a,S-n). The trivial limit of this sequence then constitutes a periodic orbit of Omega(S-a). We also determine the corresponding translation surface S(S-a,S-n) for each prefractal table Omega(S-a,S-n), and show that the genera {gn}(n=0)(infinity)) of a sequence of translation surfaces {S(S-a,S-n)}(n=0)(infinity) increase without bound. Various open questions and possible directions for future research are offered. (c) 2014 Elsevier Inc. All rights reserved.
引用
收藏
页码:969 / 994
页数:26
相关论文
共 21 条
[1]   On recurrence and ergodicity for geodesic flows on non-compact periodic polygonal surfaces [J].
Conze, Jean-Pierre ;
Gutkin, Eugene .
ERGODIC THEORY AND DYNAMICAL SYSTEMS, 2012, 32 :491-515
[2]  
Delecroix V., 2011, ARXIV11072418V2
[3]   Rectifiable Curves in Sierphiski Carpets [J].
Durand-Cartagena, Estibalitz ;
Tyson, Jeremy T. .
INDIANA UNIVERSITY MATHEMATICS JOURNAL, 2011, 60 (01) :285-309
[4]  
Falconer K., 2003, FRACTAL GEOMETRY MAT, DOI DOI 10.1002/0470013850
[5]   Billiards in polygons: Survey of recent results [J].
Gutkin, E .
JOURNAL OF STATISTICAL PHYSICS, 1996, 83 (1-2) :7-26
[6]  
Gutkin E., 1984, Ergod. Theory Dyn. Syst., V4, P569
[7]  
Gutkin E, 1996, MATH RES LETT, V3, P391
[8]  
Hubert P, 2006, HANDBOOK OF DYNAMICAL SYSTEMS, VOL 1B, P501
[9]   The Ehrenfest wind-tree model: periodic directions, recurrence, diffusion [J].
Hubert, Pascal ;
Lelievre, Samuel ;
Troubetzkoy, Serge .
JOURNAL FUR DIE REINE UND ANGEWANDTE MATHEMATIK, 2011, 656 :223-244
[10]   FRACTALS AND SELF SIMILARITY [J].
HUTCHINSON, JE .
INDIANA UNIVERSITY MATHEMATICS JOURNAL, 1981, 30 (05) :713-747