Strain relaxation of Si0.75Ge0.25 in hydrogen-implanted Si0.75Ge0.25/B-doped Si0.70Ge0.30/Si heterostructure

被引:2
|
作者
Chen, Da [1 ,2 ]
Xue, Zhongying [2 ]
Wang, Gang [1 ]
Guo, Qinglei [2 ]
Liu, Linjie [2 ]
Zhang, Miao [2 ]
Liu, Su [1 ]
Wei, Xing [2 ]
机构
[1] Lanzhou Univ, Sch Phys Sci & Technol, Lanzhou 730000, Peoples R China
[2] Chinese Acad Sci, Shanghai Inst Microsyst & Informat Technol, State Key Lab Funct Mat Informat, Shanghai 200050, Peoples R China
基金
上海市自然科学基金; 中国国家自然科学基金;
关键词
DISLOCATION DENSITY; SI; DIFFUSION; MOBILITY; LAYERS; FILM;
D O I
10.7567/APEX.7.061302
中图分类号
O59 [应用物理学];
学科分类号
摘要
An approach used to obtain a high-quality strain-relaxed SiGe layer by investigating the preferential aggregation and homogenization of nanometric bubbles along the B-doped Si0.70Ge0.30 interlayer in the H-implanted Si0.75Ge0.25/B-doped Si0.70Ge0.30/Si heterostructure has been proposed. The formation of nanometric bubbles is found to be closely correlated to the B atoms doped in the buried Si0.70Ge0.30 layer. Moreover, with the B-doped ultrathin Si0.70Ge0.30 interlayer, the formed nanometric bubbles can interact with dislocation loops and eject them by gliding to the Si0.70Ge0.30/Si interface. The threading dislocation density is 3.3 x 10(5) cm(-2), which is superior to that of the sample grown with a graded buffer layer. (C) 2014 The Japan Society of Applied Physics
引用
收藏
页数:4
相关论文
共 50 条
  • [1] Sharp crack formation in low fluence hydrogen implanted Si0.75Ge0.25/B doped Si0.70Ge0.30/Si heterostructure
    Chen, Da
    Zhang, Miao
    Liu, Su
    Wang, Yongqiang
    Nastasi, Michael
    Xue, Zhongying
    Wang, Xi
    Di, Zengfeng
    APPLIED PHYSICS LETTERS, 2013, 103 (14)
  • [2] Thermal reaction of nickel and Si0.75Ge0.25 alloy
    Pey, KL
    Choi, WK
    Chattopadhyay, S
    Zhao, HB
    Fitzgerald, EA
    Antoniadis, DA
    Lee, PS
    JOURNAL OF VACUUM SCIENCE & TECHNOLOGY A-VACUUM SURFACES AND FILMS, 2002, 20 (06): : 1903 - 1910
  • [3] Short-period (Si14/Si0.75Ge0.25)20 superlattices for the growth of high-quality Si0.75Ge0.25 alloy layers
    Rahman, MM
    Tambo, T
    Tatsuyama, C
    COMOS FRONT-END MATERIALS AND PROCESS TECHNOLOGY, 2003, 765 : 193 - 198
  • [4] Power performance of X-band Si/Si0.75Ge0.25/Si HBTs
    Ma, ZQ
    Mohammadi, S
    Bhattacharya, P
    Katehi, LPB
    Alterovitz, SA
    Ponchak, GE
    2001 TOPICAL MEETING ON SILICON MONOLITHIC INTEGRATED CIRCUITS IN RF SYSTEMS, DIGEST OF PAPERS, 2001, : 170 - 176
  • [5] STRAIN-INDUCED CONFINEMENT IN SI0.75GE0.25 (SI/SI0.5GE0.5) (001) SUPERLATTICE SYSTEMS
    MORRISON, I
    JAROS, M
    WONG, KB
    PHYSICAL REVIEW B, 1987, 35 (18): : 9693 - 9707
  • [6] Ion implantation induced damage in relaxed Si0.75Ge0.25
    Priolo, F.
    Spinella, C.
    Albertazzi, E.
    Bianconi, M.
    Lulli, G.
    Nipoti, R.
    Lindner, J.K.N.
    Mesli, A.
    Barklie, R.C.
    Sealy, L.
    Holm, B.
    Larsen, A.Nylandsted
    Nuclear Instruments and Methods in Physics Research, Section B: Beam Interactions with Materials and Atoms, 1996, 112 (1-4): : 301 - 304
  • [7] Ion implantation induced damage in relaxed Si0.75Ge0.25
    Priolo, F
    Spinella, C
    Albertazzi, E
    Bianconi, M
    Lulli, G
    Nipoti, R
    Lindner, JKN
    Mesli, A
    Barklie, RC
    Sealy, L
    Holm, B
    Larsen, AN
    NUCLEAR INSTRUMENTS & METHODS IN PHYSICS RESEARCH SECTION B-BEAM INTERACTIONS WITH MATERIALS AND ATOMS, 1996, 112 (1-4): : 301 - 304
  • [8] Ultrathin amorphous Si layer for the growth of strain relaxed Si0.75Ge0.25 alloy layer
    Rahman, M. M.
    Zheng, S. Q.
    Mori, M.
    Tambo, T.
    Tatsuyama, C.
    JOURNAL OF APPLIED PHYSICS, 2006, 100 (05)
  • [9] The interfacial reaction of Ni with (111)Ge, (100)Si0.75Ge0.25 and (100)Si at 400 °C
    Jin, LJ
    Pey, KL
    Choi, WK
    Fitzgerald, EA
    Antoniadis, DA
    Pitera, AJ
    Lee, ML
    Chi, DZ
    Tung, CH
    THIN SOLID FILMS, 2004, 462 : 151 - 155
  • [10] Optical modulator based on a Si0.75Ge0.25/Si/Si0.5Ge0.5 asymmetric superlattice structure
    Tu, X.
    Zuo, Y.
    Chen, S.
    Zhao, L.
    Yu, J.
    Wang, Q.
    LASER PHYSICS, 2008, 18 (04) : 438 - 441