Mass sum rules of the electron in quantum electrodynamics

被引:23
作者
Rodini, S. [1 ,2 ]
Metz, A. [3 ]
Pasquini, B. [1 ,2 ]
机构
[1] Univ Pavia, Dipartimento Fis, I-27100 Pavia, Italy
[2] Ist Nazl Fis Nucl, Sez Pavia, I-27100 Pavia, Italy
[3] Temple Univ, Dept Phys, SERC, Philadelphia, PA 19122 USA
基金
欧洲研究理事会; 欧盟地平线“2020”; 美国国家科学基金会;
关键词
Precision QED; Renormalization Regularization and Renormalons; ENERGY-MOMENTUM-TENSOR; ANGULAR-MOMENTUM; GRAVITATIONAL INTERACTION; SPIN;
D O I
10.1007/JHEP09(2020)067
中图分类号
O412 [相对论、场论]; O572.2 [粒子物理学];
学科分类号
摘要
Different decompositions of the nucleon mass, in terms of the masses and energies of the underlying constituents, have been proposed in the literature. We explore the corresponding sum rules in quantum electrodynamics for an electron at one-loop order in perturbation theory. To this aim we compute the form factors of the energy-momentum tensor, by paying particular attention to the renormalization of ultraviolet divergences, operator mixing and scheme dependence. We clarify the expressions of all the proposed sum rules in the electron rest frame in terms of renormalized operators. Furthermore, we consider the same sum rules in a moving frame, where they become energy decompositions. Finally, we discuss some implications of our study on the mass sum rules for the nucleon.
引用
收藏
页数:22
相关论文
共 59 条
[1]   ENERGY-MOMENTUM-TENSOR TRACE ANOMALY IN SPIN-1/2 QUANTUM ELECTRODYNAMICS [J].
ADLER, SL ;
COLLINS, JC ;
DUNCAN, A .
PHYSICAL REVIEW D, 1977, 15 (06) :1712-1721
[2]   First Measurement of Near-Threshold J/ψ Exclusive Photoproduction off the Proton [J].
Ali, A. ;
Amaryan, M. ;
Anassontzis, E. G. ;
Austregesilo, A. ;
Baalouch, M. ;
Barbos, F. ;
Barlow, J. ;
Barnes, A. ;
Barriga, E. ;
Beattie, T. D. ;
Berdnikov, V. V. ;
Black, T. ;
Boeglin, W. ;
Boer, M. ;
Briscoe, W. J. ;
Britton, T. ;
Brooks, W. K. ;
Cannon, B. E. ;
Cao, N. ;
Chudakov, E. ;
Cole, S. ;
Cortes, O. ;
Crede, V ;
Dalton, M. M. ;
Daniels, T. ;
Deur, A. ;
Dobbs, S. ;
Dolgolenko, A. ;
Dotel, R. ;
Dugger, M. ;
Dzhygadlo, R. ;
Egiyan, H. ;
Ernst, A. ;
Eugenio, P. ;
Fanelli, C. ;
Fegan, S. ;
Foda, A. M. ;
Foote, J. ;
Frye, J. ;
Furletov, S. ;
Gan, L. ;
Gasparian, A. ;
Gauzshtein, V ;
Gevorgyan, N. ;
Gleason, C. ;
Goetzen, K. ;
Goncalves, A. ;
Goryachev, V. S. ;
Guo, L. ;
Hakobyan, H. .
PHYSICAL REVIEW LETTERS, 2019, 123 (07)
[3]  
[Anonymous], 1986, CAMBRIDGE MONOGRAPHS
[4]  
[Anonymous], 1940, Memoirs Acad. R. Belgium
[5]   Where do we stand with a 3-D picture of the proton? [J].
Bacchetta, Alessandro .
EUROPEAN PHYSICAL JOURNAL A, 2016, 52 (06)
[6]   Electron in three-dimensional momentum space [J].
Bacchetta, Alessandro ;
Mantovani, Luca ;
Pasquini, Barbara .
PHYSICAL REVIEW D, 2016, 93 (01)
[7]   On the current and the density of the electric charge, the energy, the linear momentum and the angular momentum of arbitrary fields [J].
Belinfante, FJ .
PHYSICA, 1940, 7 :449-474
[8]   On the spin angular momentum of mesons [J].
Belinfante, FJ .
PHYSICA, 1939, 6 :887-898
[9]   Quark imaging in the proton via quantum phase-space distributions [J].
Belitsky, AV ;
Ji, XD ;
Yuan, F .
PHYSICAL REVIEW D, 2004, 69 (07) :12
[10]   QUANTUM ELECTRODYNAMICAL CORRECTIONS TO GRAVITON-MATTER VERTICES [J].
BERENDS, FA ;
GASTMANS, R .
ANNALS OF PHYSICS, 1976, 98 (01) :225-236