Enhanced thermal transport at covalently functionalized carbon nanotube array interfaces

被引:145
作者
Kaur, Sumanjeet [1 ]
Raravikar, Nachiket [2 ]
Helms, Brett A. [1 ]
Prasher, Ravi [3 ,4 ]
Ogletree, D. Frank [1 ]
机构
[1] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Mol Foundry, Berkeley, CA 94720 USA
[2] Intel Corp, Assembly & Test Technol Dev, Chandler, AZ 85226 USA
[3] Arizona State Univ, Sch Engn Matter Transport & Energy, Tempe, AZ 85287 USA
[4] Sheetak Inc, Austin, TX 78744 USA
关键词
HEAT-FLOW; CONDUCTION; DENSE;
D O I
10.1038/ncomms4082
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
It has been more than a decade since the experimental demonstration that the thermal conductivity of carbon nanotubes can exceed that of diamond, which has the highest thermal conductivity among naturally occurring materials. In spite of tremendous promise as a thermal material, results have been disappointing for practical thermal systems and applications based on nanotubes. The main culprit for the dramatic shortfall in the performance of nanotubes in practical systems is high thermal interface resistance between them and other components because of weak adhesion at the interface. Here we report a sixfold reduction in the thermal interface resistance between metal surfaces and vertically aligned multiwall carbon nanotube arrays by bridging the interface with short, covalently bonded organic molecules. These results are also significant for single and multilayer graphene applications, since graphene faces similar limitations in practical systems.
引用
收藏
页数:8
相关论文
共 43 条
[1]   Work functions and surface functional groups of multiwall carbon nanotubes [J].
Ago, H ;
Kugler, T ;
Cacialli, F ;
Salaneck, WR ;
Shaffer, MSP ;
Windle, AH ;
Friend, RH .
JOURNAL OF PHYSICAL CHEMISTRY B, 1999, 103 (38) :8116-8121
[2]   Characterization of mechanical and thermal properties using ultrafast optical metrology [J].
Antonelli, G. Andrew ;
Perrin, Bernard ;
Daly, Brian C. ;
Cahill, David G. .
MRS BULLETIN, 2006, 31 (08) :607-613
[3]   Superior thermal conductivity of single-layer graphene [J].
Balandin, Alexander A. ;
Ghosh, Suchismita ;
Bao, Wenzhong ;
Calizo, Irene ;
Teweldebrhan, Desalegne ;
Miao, Feng ;
Lau, Chun Ning .
NANO LETTERS, 2008, 8 (03) :902-907
[4]   A Critical Review of Thermal Issues in Lithium-Ion Batteries [J].
Bandhauer, Todd M. ;
Garimella, Srinivas ;
Fuller, Thomas F. .
JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2011, 158 (03) :R1-R25
[5]   Nanoscale thermal transport [J].
Cahill, DG ;
Ford, WK ;
Goodson, KE ;
Mahan, GD ;
Majumdar, A ;
Maris, HJ ;
Merlin, R ;
Phillpot, SR .
JOURNAL OF APPLIED PHYSICS, 2003, 93 (02) :793-818
[6]   Analysis of heat flow in layered structures for time-domain thermoreflectance [J].
Cahill, DG .
REVIEW OF SCIENTIFIC INSTRUMENTS, 2004, 75 (12) :5119-5122
[7]   Thermal contact resistance between graphene and silicon dioxide [J].
Chen, Z. ;
Jang, W. ;
Bao, W. ;
Lau, C. N. ;
Dames, C. .
APPLIED PHYSICS LETTERS, 2009, 95 (16)
[8]  
Chowdhury I, 2009, NAT NANOTECHNOL, V4, P235, DOI [10.1038/nnano.2008.417, 10.1038/NNANO.2008.417]
[9]   Contact mechanics and thermal conductance of carbon nanotube array interfaces [J].
Cola, Baratunde A. ;
Xu, Jun ;
Fisher, Timothy S. .
INTERNATIONAL JOURNAL OF HEAT AND MASS TRANSFER, 2009, 52 (15-16) :3490-3503
[10]   Multiwalled carbon nanotubes by chemical vapor deposition using multilayered metal catalysts [J].
Delzeit, L ;
Nguyen, CV ;
Chen, B ;
Stevens, R ;
Cassell, A ;
Han, J ;
Meyyappan, M .
JOURNAL OF PHYSICAL CHEMISTRY B, 2002, 106 (22) :5629-5635