A Fully Discrete LDG Method for the Distributed-Order Time-Fractional Reaction-Diffusion Equation

被引:4
作者
Wei, Leilei [1 ]
机构
[1] Henan Univ Technol, Coll Sci, Zhengzhou 450001, Henan, Peoples R China
基金
中国博士后科学基金; 中国国家自然科学基金;
关键词
Distributed-order fractional reaction-diffusion equation; Time-fractional derivative; Local discontinuous Galerkin method; Stability; Error estimate; DISCONTINUOUS GALERKIN METHOD;
D O I
10.1007/s40840-017-0525-5
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper, the numerical approximation of the distributed-order time-fractional reaction-diffusion equation is proposed and analyzed. Based on the finite difference method in time and local discontinuous Galerkin method in space, we develop a fully discrete scheme and prove that the scheme is unconditionally stable and convergent with order Ot)2+4</mml:mfenced>, where h,k,t and are the space-step size, piecewise polynomial degree, time-step size, step size in distributed-order variable, respectively. Numerical examples are presented to show the effectiveness and the accuracy of the numerical scheme.
引用
收藏
页码:979 / 994
页数:16
相关论文
共 26 条
[1]   Numerical methods of solutions of boundary value problems for the multi-term variable-distributed order diffusion equation [J].
Alikhanov, Anatoly A. .
APPLIED MATHEMATICS AND COMPUTATION, 2015, 268 :12-22
[2]  
Basu TS, 2012, INT J NUMER ANAL MOD, V9, P658
[3]   Finite difference/spectral approximations for the distributed order time fractional reaction-diffusion equation on an unbounded domain [J].
Chen, Hu ;
Lu, Shujuan ;
Chen, Wenping .
JOURNAL OF COMPUTATIONAL PHYSICS, 2016, 315 :84-97
[4]   Numerical analysis for distributed-order differential equations [J].
Diethelm, Kai ;
Ford, Neville J. .
JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2009, 225 (01) :96-104
[5]   Distributed order equations as boundary value problems [J].
Ford, N. J. ;
Morgado, M. L. .
COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2012, 64 (10) :2973-2981
[6]  
GAO GH, 1939, DIFFER EQU, V32, P591, DOI DOI 10.1002/num.22020
[7]   Two Alternating Direction Implicit Difference Schemes for Solving the Two-Dimensional Time Distributed-Order Wave Equations [J].
Gao, Guang-hua ;
Sun, Zhi-zhong .
JOURNAL OF SCIENTIFIC COMPUTING, 2016, 69 (02) :506-531
[8]   ERROR ESTIMATES FOR APPROXIMATIONS OF DISTRIBUTED ORDER TIME FRACTIONAL DIFFUSION WITH NONSMOOTH DATA [J].
Jin, Bangti ;
Lazarov, Raytcho ;
Sheen, Dongwoo ;
Zhou, Zhi .
FRACTIONAL CALCULUS AND APPLIED ANALYSIS, 2016, 19 (01) :69-93
[9]   Numerical solution of distributed order fractional differential equations [J].
Katsikadelis, John T. .
JOURNAL OF COMPUTATIONAL PHYSICS, 2014, 259 :11-22
[10]   Distributed order calculus and equations of ultraslow diffusion [J].
Kochubei, Anatoly N. .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2008, 340 (01) :252-281