Brain-Computer Interface-Controlled Exoskeletons in Clinical Neurorehabilitation: Ready or Not?

被引:41
作者
Colucci, Annalisa [1 ]
Vermehren, Mareike [1 ]
Cavallo, Alessia [1 ]
Angerhoefer, Cornelius [1 ]
Peekhaus, Niels [1 ]
Zollo, Loredana [2 ]
Kim, Won-Seok [3 ]
Paik, Nam-Jong [3 ]
Soekadar, Surjo R. R. [1 ,4 ]
机构
[1] Charite Univ Med Berlin, Dept Psychiat & Neurosci, Neurowissensch Forschungszentrum Julich NWFZ, Clin Neurotechnol Lab,Charite Campus Mitte CCM, Charitepl 1, Berlin, Germany
[2] Univ Campus Biomed Rome, Unit Adv Robot & Human Centred Technol, CREO Lab, Rome, RM, Italy
[3] Seoul Natl Univ, Coll Med, Bundang Hosp, Dept Rehabil Med, Seongnam Si, Gyeonggi Do, South Korea
[4] Charite Univ Med Berlin, Charitepl 1, D-10117 Berlin, Germany
基金
欧洲研究理事会;
关键词
brain-computer interface (BCI); stroke; exoskeletons; motor recovery; clinical translation; MACHINE INTERFACES; MOTOR CORTEX; STROKE; STIMULATION; REHABILITATION; COMMUNICATION; OSCILLATIONS; RESTORATION; THERAPY; THOUGHT;
D O I
10.1177/15459683221138751
中图分类号
R74 [神经病学与精神病学];
学科分类号
摘要
The development of brain-computer interface-controlled exoskeletons promises new treatment strategies for neurorehabilitation after stroke or spinal cord injury. By converting brain/neural activity into control signals of wearable actuators, brain/neural exoskeletons (B/NEs) enable the execution of movements despite impaired motor function. Beyond the use as assistive devices, it was shown that-upon repeated use over several weeks-B/NEs can trigger motor recovery, even in chronic paralysis. Recent development of lightweight robotic actuators, comfortable and portable real-world brain recordings, as well as reliable brain/neural control strategies have paved the way for B/NEs to enter clinical care. Although B/NEs are now technically ready for broader clinical use, their promotion will critically depend on early adopters, for example, research-oriented physiotherapists or clinicians who are open for innovation. Data collected by early adopters will further elucidate the underlying mechanisms of B/NE-triggered motor recovery and play a key role in increasing efficacy of personalized treatment strategies. Moreover, early adopters will provide indispensable feedback to the manufacturers necessary to further improve robustness, applicability, and adoption of B/NEs into existing therapy plans.
引用
收藏
页码:747 / 756
页数:10
相关论文
共 71 条
[1]   Restoration of reaching and grasping movements through brain-controlled muscle stimulation in a person with tetraplegia: a proof-of-concept demonstration [J].
Ajiboye, A. Bolu ;
Willett, Francis R. ;
Young, Daniel R. ;
Memberg, William D. ;
Murphy, Brian A. ;
Miller, Jonathan P. ;
Walter, Benjamin L. ;
Sweet, Jennifer A. ;
Hoyen, Harry A. ;
Keith, Michael W. ;
Peckham, P. Hunter ;
Simeral, John D. ;
Donoghue, John P. ;
Hochberg, Leigh R. ;
Kirsch, Robert F. .
LANCET, 2017, 389 (10081) :1821-1830
[2]   A Randomized Controlled Trial of EEG-Based Motor Imagery Brain-Computer Interface Robotic Rehabilitation for Stroke [J].
Ang, Kai Keng ;
Chua, Karen Sui Geok ;
Phua, Kok Soon ;
Wang, Chuanchu ;
Chin, Zheng Yang ;
Kuah, Christopher Wee Keong ;
Low, Wilson ;
Guan, Cuntai .
CLINICAL EEG AND NEUROSCIENCE, 2015, 46 (04) :310-320
[3]   Post-stroke Rehabilitation of Severe Upper Limb Paresis in Germany - Toward Long-Term Treatment With Brain-Computer Interfaces [J].
Angerhoefer, Cornelius ;
Colucci, Annalisa ;
Vermehren, Mareike ;
Hoemberg, Volker ;
Soekadar, Surjo R. .
FRONTIERS IN NEUROLOGY, 2021, 12
[4]   Decoding Upper Limb Movement Attempt From EEG Measurements of the Contralesional Motor Cortex in Chronic Stroke Patients [J].
Antelis, Javier M. ;
Montesano, Luis ;
Ramos-Murguialday, Ander ;
Birbaumer, Niels ;
Minguez, Javier .
IEEE TRANSACTIONS ON BIOMEDICAL ENGINEERING, 2017, 64 (01) :99-111
[5]   Development of a Low-Cost EEG-Controlled Hand Exoskeleton 3D Printed on Textiles [J].
Araujo, Rommel S. ;
Silva, Camille R. ;
Netto, Severino P. N. ;
Morya, Edgard ;
Brasil, Fabricio L. .
FRONTIERS IN NEUROSCIENCE, 2021, 15
[6]   Brain-computer interfaces using capacitive measurement of visual or auditory steady-state responses [J].
Baek, Hyun Jae ;
Kim, Hyun Seok ;
Heo, Jeong ;
Lim, Yong Gyu ;
Park, Kwang Suk .
JOURNAL OF NEURAL ENGINEERING, 2013, 10 (02)
[7]   Immediate and long-term effects of BCI-based rehabilitation of the upper extremity after stroke: a systematic review and meta-analysis [J].
Bai, Zhongfei ;
Fong, Kenneth N. K. ;
Zhang, Jack Jiaqi ;
Chan, Josephine ;
Ting, K. H. .
JOURNAL OF NEUROENGINEERING AND REHABILITATION, 2020, 17 (01)
[8]   An exoskeleton controlled by an epidural wireless brain-machine interface in a tetraplegic patient: a proof-of-concept demonstration [J].
Benabid, Alim Louis ;
Costecalde, Thomas ;
Eliseyev, Andrey ;
Charvet, Guillaume ;
Verney, Alexandre ;
Karakas, Serpil ;
Foerster, Michael ;
Lambert, Aurelien ;
Moriniere, Boris ;
Abroug, Neil ;
Schaeffer, Marie-Caroline ;
Moly, Alexandre ;
Sauter-Starace, Fabien ;
Ratel, David ;
Moro, Cecile ;
Torres-Martinez, Napoleon ;
Langar, Lilia ;
Oddoux, Manuela ;
Polosan, Mircea ;
Pezzani, Stephane ;
Auboiroux, Vincent ;
Aksenova, Tetiana ;
Mestais, Corinne ;
Chabardes, Stephan .
LANCET NEUROLOGY, 2019, 18 (12) :1112-1122
[9]   Neural activity modulations and motor recovery following brain-exoskeleton interface mediated stroke rehabilitation [J].
Bhagat, Nikunj A. ;
Yozbatiran, Nuray ;
Sullivan, Jennifer L. ;
Paranjape, Ruta ;
Losey, Colin ;
Hernandez, Zachary ;
Keser, Zafer ;
Grossman, Robert ;
Francisco, Gerard E. ;
O'Malley, Marcia K. ;
Contreras-Vidal, Jose L. .
NEUROIMAGE-CLINICAL, 2020, 28
[10]   Brain-actuated functional electrical stimulation elicits lasting arm motor recovery after stroke [J].
Biasiucci, A. ;
Leeb, R. ;
Iturrate, I. ;
Perdikis, S. ;
Al-Khodairy, A. ;
Corbet, T. ;
Schnider, A. ;
Schmidlin, T. ;
Zhang, H. ;
Bassolino, M. ;
Viceic, D. ;
Vuadens, P. ;
Guggisberg, A. G. ;
Millan, J. D. R. .
NATURE COMMUNICATIONS, 2018, 9