Parametric perturbations and non-feedback controlling chaotic motion

被引:5
作者
Loskutov, Alexander [1 ]
机构
[1] Moscow MV Lomonosov State Univ, Fac Phys, Moscow 119992, Russia
来源
DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS-SERIES B | 2006年 / 6卷 / 05期
关键词
chaos; suppression of chaos; perturbed maps; periodic orbits;
D O I
10.3934/dcdsb.2006.6.1157
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper we generalize analytic studies the problems related to suppression of chaos and non-feedback controlling chaotic motion. We develop an analytic method of the investigation of qualitative changes in chaotic dynamical systems under certain external periodic perturbations. It is proven that for polymodal maps one can stabilize chosen in advance periodic orbits. As an example, the quadratic family of maps is considered. Also we demonstrate that for a piecewise linear family of maps and for a two-dimensional map having a hyperbolic attractor there are feedback-free perturbations which lead to the suppression of chaos and stabilization of certain periodic orbits.
引用
收藏
页码:1157 / 1174
页数:18
相关论文
共 34 条
[1]  
ABARBANEL HDI, 1990, IEEE T CIRCUITS SYST, V40, P643
[2]  
Alekseev V. V., 1985, Moscow University Physics Bulletin, V40, P46
[3]  
Alekseev V. V., 1987, Soviet Physics - Doklady, V32, P270
[4]  
BELYKH VN, 1982, SYSTEMS PHASE SYNCHR, P161
[5]  
BERGE P, 1988, ORDRE DANS CHAOS
[6]   The control of chaos: theory and applications [J].
Boccaletti, S ;
Grebogi, C ;
Lai, YC ;
Mancini, H ;
Maza, D .
PHYSICS REPORTS-REVIEW SECTION OF PHYSICS LETTERS, 2000, 329 (03) :103-197
[7]  
BUNIMOVICH LA, 1989, DYNAMICAL SYSTEMS, V2
[8]  
Fedorenko, 1989, DYNAMICS ONE DIMENSI
[9]   CONTROLLING CARDIAC CHAOS [J].
GARFINKEL, A ;
SPANO, ML ;
DITTO, WL ;
WEISS, JN .
SCIENCE, 1992, 257 (5074) :1230-1235
[10]  
Glass L., 1988, From Clocks to Chaos