Platelet Graphite Nanofibers for Electrochemical Sensing and Biosensing: The Influence of Graphene Sheet Orientation

被引:108
作者
Ambrosi, Adriano [1 ]
Sasaki, Toshio [2 ]
Pumera, Martin [1 ,3 ]
机构
[1] Natl Inst Mat Sci, Ctr Biomat, Biomat Syst Grp, Tsukuba, Ibaraki 3050044, Japan
[2] Nagoya Univ, Ecotopia Sci Inst, High Voltage Electron Microscope Lab, Chikusa Ku, Nagoya, Aichi 4640814, Japan
[3] Natl Inst Mat Sci, Int Ctr Mat Nanoarchitecton, Tsukuba, Ibaraki 3050044, Japan
关键词
biosensors; carbon; electrochemistry; graphene; nanofibers; NANOTUBE-MODIFIED ELECTRODES; CARBON NANOTUBES; HYDROGEN-PEROXIDE; METAL IMPURITIES; NITRIC-ACID; FUNDAMENTALS; ACTIVATION; FILMS; OXIDE;
D O I
10.1002/asia.200900544
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Here, we demonstrate that platelet graphite nanofibers (PGNFs) exhibit fast heterogeneous electron-transfer rates for a wide variety of compounds such as FeCl3, ferrocyanide, dopamine, uric acid, ascorbic acid, and the reduced form of beta-nicotinamide adenine dinucleotide. The electrochemical properties of PGNFs are superior to those of multiwalled carbon nanotubes (MWCNTs) or graphite microparticles (GMPs). Transmission electron microscopy and Raman spectroscopy reveal that this arises from the unique graphene sheet orientation of such platelet nanofibers, which accounts for their unparalleled high ratio of graphene edge planes versus basal planes.
引用
收藏
页码:266 / 271
页数:6
相关论文
共 33 条
[1]  
[Anonymous], 2005, ANGEW CHEM
[2]   Carbon nanotubes contain metal impurities which are responsible for the "electrocatalysis" seen at some nanotube-modified electrodes [J].
Banks, CE ;
Crossley, A ;
Salter, C ;
Wilkins, SJ ;
Compton, RG .
ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2006, 45 (16) :2533-2537
[3]   Electromechanical resonators from graphene sheets [J].
Bunch, J. Scott ;
van der Zande, Arend M. ;
Verbridge, Scott S. ;
Frank, Ian W. ;
Tanenbaum, David M. ;
Parpia, Jeevak M. ;
Craighead, Harold G. ;
McEuen, Paul L. .
SCIENCE, 2007, 315 (5811) :490-493
[4]   General equation for the determination of the crystallite size La of nanographite by Raman spectroscopy [J].
Cançado, LG ;
Takai, K ;
Enoki, T ;
Endo, M ;
Kim, YA ;
Mizusaki, H ;
Jorio, A ;
Coelho, LN ;
Magalhaes-Paniago, R ;
Pimenta, MA .
APPLIED PHYSICS LETTERS, 2006, 88 (16)
[5]   Nanotrench arrays reveal insight into graphite electrochemistry [J].
Davies, TJ ;
Hyde, ME ;
Compton, RG .
ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2005, 44 (32) :5121-5126
[6]   Electrochemical opening of single-walled carbon nanotubes filled with metal halides and with closed ends [J].
Holloway, Andrew F. ;
Toghill, Kathryn ;
Wildgoose, Gregory G. ;
Compton, Richard G. ;
Ward, Michael A. H. ;
Tobias, Gerard ;
Llewellyn, Simon A. ;
Ballesteros, Belen ;
Green, Malcolm L. H. ;
Crossley, Alison .
JOURNAL OF PHYSICAL CHEMISTRY C, 2008, 112 (28) :10389-10397
[7]   Towards an ultrasensitive method for the determination of metal impurities in carbon nanotubes [J].
Kolodiazhnyi, Taras ;
Pumera, Martin .
SMALL, 2008, 4 (09) :1476-1484
[8]   Effects of microstructure of carbon nanofibers for amperometric detection of hydrogen peroxide [J].
Li, Zhizhou ;
Cui, Xiaoli ;
Zheng, Junsheng ;
Wang, Qingfei ;
Lin, Yuehe .
ANALYTICA CHIMICA ACTA, 2007, 597 (02) :238-244
[9]   Electrochemical activation of carbon nanotubes [J].
Musameh, M ;
Lawrence, NS ;
Wang, J .
ELECTROCHEMISTRY COMMUNICATIONS, 2005, 7 (01) :14-18
[10]   Fine structure constant defines visual transparency of graphene [J].
Nair, R. R. ;
Blake, P. ;
Grigorenko, A. N. ;
Novoselov, K. S. ;
Booth, T. J. ;
Stauber, T. ;
Peres, N. M. R. ;
Geim, A. K. .
SCIENCE, 2008, 320 (5881) :1308-1308