Generative chemistry: drug discovery with deep learning generative models

被引:73
|
作者
Bian, Yuemin [1 ,2 ,3 ]
Xie, Xiang-Qun [1 ,2 ,3 ,4 ,5 ,6 ]
机构
[1] Univ Pittsburgh, Dept Pharmaceut Sci, Sch Pharm, Pittsburgh, PA 15261 USA
[2] Univ Pittsburgh, Computat Chem Genom Screening Ctr, Sch Pharm, Pittsburgh, PA 15261 USA
[3] Univ Pittsburgh, NIH, Natl Ctr Excellence Computat Drug Abuse Res, Pittsburgh, PA 15261 USA
[4] Univ Pittsburgh, Drug Discovery Inst, 335 Sutherland Dr,206 Salk Pavilion, Pittsburgh, PA 15261 USA
[5] Univ Pittsburgh, Sch Med, Dept Computat Biol, Pittsburgh, PA 15261 USA
[6] Univ Pittsburgh, Sch Med, Dept Struct Biol, Pittsburgh, PA 15261 USA
关键词
Drug discovery; Deep learning; Generative model; Recurrent neural network; Variational autoencoder; Adversarial autoencoder; Generative adversarial network; MOLECULAR DESIGN; DATABASE; SYSTEMS; REPRESENTATION; DESCRIPTORS; COMPLEXITY; CHALLENGES; LANGUAGE; SMILES;
D O I
10.1007/s00894-021-04674-8
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
The de novo design of molecular structures using deep learning generative models introduces an encouraging solution to drug discovery in the face of the continuously increased cost of new drug development. From the generation of original texts, images, and videos, to the scratching of novel molecular structures the creativity of deep learning generative models exhibits the height machine intelligence can achieve. The purpose of this paper is to review the latest advances in generative chemistry which relies on generative modeling to expedite the drug discovery process. This review starts with a brief history of artificial intelligence in drug discovery to outline this emerging paradigm. Commonly used chemical databases, molecular representations, and tools in cheminformatics and machine learning are covered as the infrastructure for generative chemistry. The detailed discussions on utilizing cutting-edge generative architectures, including recurrent neural network, variational autoencoder, adversarial autoencoder, and generative adversarial network for compound generation are focused. Challenges and future perspectives follow.
引用
收藏
页数:18
相关论文
共 50 条
  • [1] Generative chemistry: drug discovery with deep learning generative models
    Yuemin Bian
    Xiang-Qun Xie
    Journal of Molecular Modeling, 2021, 27
  • [2] Learning Deep Generative Models
    Salakhutdinov, Ruslan
    ANNUAL REVIEW OF STATISTICS AND ITS APPLICATION, VOL 2, 2015, 2 : 361 - 385
  • [3] Discovery of drug–omics associations in type 2 diabetes with generative deep-learning models
    Rosa Lundbye Allesøe
    Agnete Troen Lundgaard
    Ricardo Hernández Medina
    Alejandro Aguayo-Orozco
    Joachim Johansen
    Jakob Nybo Nissen
    Caroline Brorsson
    Gianluca Mazzoni
    Lili Niu
    Jorge Hernansanz Biel
    Cristina Leal Rodríguez
    Valentas Brasas
    Henry Webel
    Michael Eriksen Benros
    Anders Gorm Pedersen
    Piotr Jaroslaw Chmura
    Ulrik Plesner Jacobsen
    Andrea Mari
    Robert Koivula
    Anubha Mahajan
    Ana Vinuela
    Juan Fernandez Tajes
    Sapna Sharma
    Mark Haid
    Mun-Gwan Hong
    Petra B. Musholt
    Federico De Masi
    Josef Vogt
    Helle Krogh Pedersen
    Valborg Gudmundsdottir
    Angus Jones
    Gwen Kennedy
    Jimmy Bell
    E. Louise Thomas
    Gary Frost
    Henrik Thomsen
    Elizaveta Hansen
    Tue Haldor Hansen
    Henrik Vestergaard
    Mirthe Muilwijk
    Marieke T. Blom
    Leen M. ‘t Hart
    Francois Pattou
    Violeta Raverdy
    Soren Brage
    Tarja Kokkola
    Alison Heggie
    Donna McEvoy
    Miranda Mourby
    Jane Kaye
    Nature Biotechnology, 2023, 41 : 399 - 408
  • [4] Molecular design in drug discovery: a comprehensive review of deep generative models
    Cheng, Yu
    Gong, Yongshun
    Liu, Yuansheng
    Song, Bosheng
    Zou, Quan
    BRIEFINGS IN BIOINFORMATICS, 2021, 22 (06)
  • [5] Discovery of drug-omics associations in type 2 diabetes with generative deep-learning models
    Allesoe, Rosa Lundbye
    Lundgaard, Agnete Troen
    Medina, Ricardo Hernandez
    Aguayo-Orozco, Alejandro
    Johansen, Joachim
    Nissen, Jakob Nybo
    Brorsson, Caroline
    Mazzoni, Gianluca
    Niu, Lili
    Biel, Jorge Hernansanz
    Brasas, Valentas
    Webel, Henry
    Benros, Michael Eriksen
    Pedersen, Anders Gorm
    Chmura, Piotr Jaroslaw
    Jacobsen, Ulrik Plesner
    Mari, Andrea
    Koivula, Robert
    Mahajan, Anubha
    Vinuela, Ana
    Tajes, Juan Fernandez
    Sharma, Sapna
    Haid, Mark
    Hong, Mun-Gwan
    Musholt, Petra B.
    De Masi, Federico
    Vogt, Josef
    Pedersen, Helle Krogh
    Gudmundsdottir, Valborg
    Jones, Angus
    Kennedy, Gwen
    Bell, Jimmy
    Thomas, E. Louise
    Frost, Gary
    Thomsen, Henrik
    Hansen, Elizaveta
    Hansen, Tue Haldor
    Vestergaard, Henrik
    Muilwijk, Mirthe
    Blom, Marieke T.
    Hart, Leen M. T.
    Pattou, Francois
    Raverdy, Violeta
    Brage, Soren
    Kokkola, Tarja
    Heggie, Alison
    McEvoy, Donna
    Mourby, Miranda
    Kaye, Jane
    Hattersley, Andrew
    NATURE BIOTECHNOLOGY, 2023, 41 (03) : 399 - +
  • [6] Deep Generative Models for Materials Discovery and Machine Learning-Accelerated Innovation
    Fuhr, Addis S.
    Sumpter, Bobby G.
    FRONTIERS IN MATERIALS, 2022, 9
  • [7] Deep generative molecular design reshapes drug discovery
    Zeng, Xiangxiang
    Wang, Fei
    Luo, Yuan
    Kang, Seung-Gu
    Tang, Jian
    Lightstone, Felice C.
    Fang, Evandro F.
    Cornell, Wendy
    Nussinov, Ruth
    Cheng, Feixiong
    CELL REPORTS MEDICINE, 2022, 3 (12)
  • [8] Author Correction: Discovery of drug–omics associations in type 2 diabetes with generative deep-learning models
    Rosa Lundbye Allesøe
    Agnete Troen Lundgaard
    Ricardo Hernández Medina
    Alejandro Aguayo-Orozco
    Joachim Johansen
    Jakob Nybo Nissen
    Caroline Brorsson
    Gianluca Mazzoni
    Lili Niu
    Jorge Hernansanz Biel
    Cristina Leal Rodríguez
    Valentas Brasas
    Henry Webel
    Michael Eriksen Benros
    Anders Gorm Pedersen
    Piotr Jaroslaw Chmura
    Ulrik Plesner Jacobsen
    Andrea Mari
    Robert Koivula
    Anubha Mahajan
    Ana Vinuela
    Juan Fernandez Tajes
    Sapna Sharma
    Mark Haid
    Mun-Gwan Hong
    Petra B. Musholt
    Federico De Masi
    Josef Vogt
    Helle Krogh Pedersen
    Valborg Gudmundsdottir
    Angus Jones
    Gwen Kennedy
    Jimmy Bell
    E. Louise Thomas
    Gary Frost
    Henrik Thomsen
    Elizaveta Hansen
    Tue Haldor Hansen
    Henrik Vestergaard
    Mirthe Muilwijk
    Marieke T. Blom
    Leen M. ‘t Hart
    Francois Pattou
    Violeta Raverdy
    Soren Brage
    Tarja Kokkola
    Alison Heggie
    Donna McEvoy
    Miranda Mourby
    Jane Kaye
    Nature Biotechnology, 2023, 41 : 1026 - 1026
  • [9] Computational Discovery of TTF Molecules with Deep Generative Models
    Yakubovich, Alexander
    Odinokov, Alexey
    Nikolenko, Sergey
    Jung, Yongsik
    Choi, Hyeonho
    FRONTIERS IN CHEMISTRY, 2021, 9
  • [10] Quantum Generative Models for Small Molecule Drug Discovery
    Li J.
    Topaloglu R.O.
    Ghosh S.
    IEEE Transactions on Quantum Engineering, 2021, 2