Generative chemistry: drug discovery with deep learning generative models

被引:76
|
作者
Bian, Yuemin [1 ,2 ,3 ]
Xie, Xiang-Qun [1 ,2 ,3 ,4 ,5 ,6 ]
机构
[1] Univ Pittsburgh, Dept Pharmaceut Sci, Sch Pharm, Pittsburgh, PA 15261 USA
[2] Univ Pittsburgh, Computat Chem Genom Screening Ctr, Sch Pharm, Pittsburgh, PA 15261 USA
[3] Univ Pittsburgh, NIH, Natl Ctr Excellence Computat Drug Abuse Res, Pittsburgh, PA 15261 USA
[4] Univ Pittsburgh, Drug Discovery Inst, 335 Sutherland Dr,206 Salk Pavilion, Pittsburgh, PA 15261 USA
[5] Univ Pittsburgh, Sch Med, Dept Computat Biol, Pittsburgh, PA 15261 USA
[6] Univ Pittsburgh, Sch Med, Dept Struct Biol, Pittsburgh, PA 15261 USA
关键词
Drug discovery; Deep learning; Generative model; Recurrent neural network; Variational autoencoder; Adversarial autoencoder; Generative adversarial network; MOLECULAR DESIGN; DATABASE; SYSTEMS; REPRESENTATION; DESCRIPTORS; COMPLEXITY; CHALLENGES; LANGUAGE; SMILES;
D O I
10.1007/s00894-021-04674-8
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
The de novo design of molecular structures using deep learning generative models introduces an encouraging solution to drug discovery in the face of the continuously increased cost of new drug development. From the generation of original texts, images, and videos, to the scratching of novel molecular structures the creativity of deep learning generative models exhibits the height machine intelligence can achieve. The purpose of this paper is to review the latest advances in generative chemistry which relies on generative modeling to expedite the drug discovery process. This review starts with a brief history of artificial intelligence in drug discovery to outline this emerging paradigm. Commonly used chemical databases, molecular representations, and tools in cheminformatics and machine learning are covered as the infrastructure for generative chemistry. The detailed discussions on utilizing cutting-edge generative architectures, including recurrent neural network, variational autoencoder, adversarial autoencoder, and generative adversarial network for compound generation are focused. Challenges and future perspectives follow.
引用
收藏
页数:18
相关论文
共 50 条
  • [1] Generative chemistry: drug discovery with deep learning generative models
    Yuemin Bian
    Xiang-Qun Xie
    Journal of Molecular Modeling, 2021, 27
  • [2] Molecular design in drug discovery: a comprehensive review of deep generative models
    Cheng, Yu
    Gong, Yongshun
    Liu, Yuansheng
    Song, Bosheng
    Zou, Quan
    BRIEFINGS IN BIOINFORMATICS, 2021, 22 (06)
  • [3] Generative Deep Learning for Targeted Compound Design
    Sousa, Tiago
    Correia, Joao
    Pereira, Vitor
    Rocha, Miguel
    JOURNAL OF CHEMICAL INFORMATION AND MODELING, 2021, 61 (11) : 5343 - 5361
  • [4] Unleashing the power of generative AI in drug discovery
    Gangwal, Amit
    Lavecchia, Antonio
    DRUG DISCOVERY TODAY, 2024, 29 (06)
  • [5] Learning Deep Generative Models
    Salakhutdinov, Ruslan
    ANNUAL REVIEW OF STATISTICS AND ITS APPLICATION, VOL 2, 2015, 2 : 361 - 385
  • [6] Deep generative molecular design reshapes drug discovery
    Zeng, Xiangxiang
    Wang, Fei
    Luo, Yuan
    Kang, Seung-Gu
    Tang, Jian
    Lightstone, Felice C.
    Fang, Evandro F.
    Cornell, Wendy
    Nussinov, Ruth
    Cheng, Feixiong
    CELL REPORTS MEDICINE, 2022, 3 (12)
  • [7] Deep Generative Models in De Novo Drug Molecule Generation
    Pang, Chao
    Qiao, Jianbo
    Zeng, Xiangxiang
    Zou, Quan
    Wei, Leyi
    JOURNAL OF CHEMICAL INFORMATION AND MODELING, 2023, 64 (07) : 2174 - 2194
  • [8] Deep generative models for peptide design
    Wan, Fangping
    Kontogiorgos-Heintz, Daphne
    de la Fuente-Nunez, Cesar
    DIGITAL DISCOVERY, 2022, 1 (03): : 195 - 208
  • [9] ACEGEN: Reinforcement Learning of Generative Chemical Agents for Drug Discovery
    Bou, Albert
    Thomas, Morgan
    Dittert, Sebastian
    Navarro, Carles
    Majewski, Maciej
    Wang, Ye
    Patel, Shivam
    Tresadern, Gary
    Ahmad, Mazen
    Moens, Vincent
    Sherman, Woody
    Sciabola, Simone
    De Fabritiis, Gianni
    JOURNAL OF CHEMICAL INFORMATION AND MODELING, 2024, 64 (15) : 5900 - 5911
  • [10] Drug Discovery using Generative Adversarial Network with Reinforcement Learning
    Padalkar, Ganesh Ravindra
    Patil, Shivani Dinkar
    Hegadi, Mukta Mallikarjun
    Jaybhaye, Nikita Kailash
    2021 INTERNATIONAL CONFERENCE ON COMPUTER COMMUNICATION AND INFORMATICS (ICCCI), 2021,