UNIFIED SOLUTION OF FEKETE-SZEGO PROBLEM FOR SUBCLASSES OF STARLIKE MAPPINGS IN SEVERAL COMPLEX VARIABLES

被引:23
作者
Tu, Zhenhan [1 ]
Xiong, Liangpeng [1 ]
机构
[1] Wuhan Univ, Sch Math & Stat, Wuhan 430072, Hubei, Peoples R China
基金
中国国家自然科学基金;
关键词
Bounded starlike circular domain; Fekete-Szego problem; Minkowski functional; starlike mappings; subordination; COEFFICIENT BOUNDS; GROWTH; INEQUALITY;
D O I
10.1515/ms-2017-0273
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let S-phi* be a subclass of starlike functions in the unit disk U; where phi is a convex function such that phi(0) = 1, phi'(0) > 0, R(phi(xi)) > 0 and phi(U) is symmetric with respect to the real axis. We obtain the sharp solution of Fekete-Szego problem for the family S-phi*, and then extend the result to the case of corresponding subclass defined on the bounded starlike circular domain Omega in several complex variables, which give an unified answer of Fekete-Szego problem for the kinds of subclasses of starlike mappings de fined on Omega. At last, we propose two conjectures related the same problems on the unit ball in a complex Banach space and on the unit polydisk in C-n. (C) 2019 Mathematical Institute Slovak Academy of Sciences
引用
收藏
页码:843 / 856
页数:14
相关论文
共 28 条
[1]  
Ali RM, 2013, B MALAYS MATH SCI SO, V36, P23
[2]   On the Fekete-Szego problem for concave univalent functions [J].
Bhowmik, B. ;
Ponnusamy, S. ;
Wirths, K-J .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2011, 373 (02) :432-438
[3]  
BIEBERBACH L., 1916, KOEFFIZIENTEN EINIGE
[4]  
Cartan H., 1933, LECONS FONCTIONS UNI, P129
[5]  
Fekete M., 1933, J. Lond. Math. Soc., V8, P85, DOI [10.1112/jlms/s1-8.2.85, DOI 10.1112/JLMS/S1-8.2.85]
[6]  
Gong S., 1999, The Bieberbach Conjecture, Translated from the 1989 Chinese Original and Revised by the Author, AMS/IP Studies in Advanced Mathematics
[7]   Growth, distortion and coefficient bounds for Caratheodory families in Cn and complex Banach spaces [J].
Graham, I. ;
Hamada, H. ;
Honda, T. ;
Kohr, G. ;
Shon, K. H. .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2014, 416 (01) :449-469
[8]   Parametric representation of univalent mappings in several complex variables [J].
Graham, I ;
Hamada, H ;
Kohr, G .
CANADIAN JOURNAL OF MATHEMATICS-JOURNAL CANADIEN DE MATHEMATIQUES, 2002, 54 (02) :324-351
[9]   Growth theorems and coefficient bounds for univalent holomorphic mappings which have parametric representation [J].
Hamada, H ;
Honda, T ;
Kohr, G .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2006, 317 (01) :302-319
[10]  
Hamada H., 2001, Glas Mat Ser III, V36, P39