Imaging sebaceous gland using optical coherence tomography with deep learning assisted automatic identification

被引:5
作者
Luo, Yuemei [1 ]
Wang, Xianghong [1 ]
Yu, Xiaojun [2 ]
Jin, Ruibing [3 ]
Liu, Linbo [1 ,4 ]
机构
[1] Nanyang Technol Univ, Sch Elect & Elect Engn, Singapore 639798, Singapore
[2] Northwestern Polytech Univ, Sch Automat, Xian, Peoples R China
[3] ASTAR, Inst Infocomm Res, Singapore, Singapore
[4] Nanyang Technol Univ, Sch Chem & Biomed Engn, Singapore, Singapore
基金
中国国家自然科学基金; 中国博士后科学基金; 英国医学研究理事会;
关键词
computer‐ aided diagnosis; deep learning; optical coherence tomography; optical imaging; sebaceous glands; IN-VIVO; HUMAN SKIN;
D O I
10.1002/jbio.202100015
中图分类号
Q5 [生物化学];
学科分类号
071010 ; 081704 ;
摘要
Imaging sebaceous glands and evaluating morphometric parameters are important for diagnosis and treatment of serum problems. In this article, we investigate the feasibility of high-resolution optical coherence tomography (OCT) in combination with deep learning assisted automatic identification for these purposes. Specifically, with a spatial resolution of 2.3 mu m x 6.2 mu m (axial x lateral, in air), OCT is capable of clearly differentiating sebaceous gland from other skin structures and resolving the sebocyte layer. In order to achieve efficient and timely imaging analysis, a deep learning approach built upon ResNet18 is developed to automatically classify OCT images (with/without sebaceous gland), with a classification accuracy of 97.9%. Based on the result of automatic identification, we further demonstrate the possibility to measure gland size, sebocyte layer thickness and gland density.
引用
收藏
页数:9
相关论文
共 39 条
[1]   Elucidating the pulsed-dye laser treatment of sebaceous hyperplasia in vivo with real-time confocal scanning laser microscopy [J].
Aghassi, D ;
González, E ;
Anderson, RR ;
Rajadhyaksha, M ;
González, S .
JOURNAL OF THE AMERICAN ACADEMY OF DERMATOLOGY, 2000, 43 (01) :49-53
[2]   Biophysical and biological contributions of polyamine-coated carbon nanotubes and bidimensional buckypapers in the delivery of miRNAs to human cells [J].
Celluzzi, Antonella ;
Paolini, Alessandro ;
D'Oria, Valentina ;
Risoluti, Roberta ;
Materazzi, Stefano ;
Pezzullo, Marco ;
Casciardi, Stefano ;
Sennato, Simona ;
Bordi, Federico ;
Masotti, Andrea .
INTERNATIONAL JOURNAL OF NANOMEDICINE, 2018, 13 :1-18
[3]   LOCALIZATION OF ANDROGEN RECEPTORS IN HUMAN SKIN BY IMMUNOHISTOCHEMISTRY - IMPLICATIONS FOR THE HORMONAL-REGULATION OF HAIR-GROWTH, SEBACEOUS GLANDS AND SWEAT GLANDS [J].
CHOUDHRY, R ;
HODGINS, MB ;
VANDERKWAST, TH ;
BRINKMANN, AO ;
BOERSMA, WJA .
JOURNAL OF ENDOCRINOLOGY, 1992, 133 (03) :467-&
[4]  
Christian, 2005, MICROSC MICROANAL, V11, P472
[5]   Comparative tropism, replication kinetics, and cell damage profiling of SARS-CoV-2 and SARS-CoV with implications for clinical manifestations, transmissibility, and laboratory studies of COVID-19: an observational study [J].
Chu, Hin ;
Chan, Jasper Fuk-Woo ;
Yuen, Terrence Tsz-Tai ;
Shuai, Huiping ;
Yuan, Shuofeng ;
Wang, Yixin ;
Hu, Bingjie ;
Yip, Cyril Chik-Yan ;
Tsang, Jessica Oi-Ling ;
Huang, Xiner ;
Chai, Yue ;
Yang, Dong ;
Hou, Yuxin ;
Chik, Kenn Ka-Heng ;
Zhang, Xi ;
Fung, Agnes Yim-Fong ;
Tsoi, Hoi-Wah ;
Cai, Jian-Piao ;
Chan, Wan-Mui ;
Ip, Jonathan Daniel ;
Chu, Allen Wing-Ho ;
Zhou, Jie ;
Lung, David Christopher ;
Kok, Kin-Hang ;
To, Kelvin Kai-Wang ;
Tsang, Owen Tak-Yin ;
Chan, Kwok-Hung ;
Yuen, Kwok-Yung .
LANCET MICROBE, 2020, 1 (01) :E14-E23
[6]  
Deng J, 2009, PROC CVPR IEEE, P248, DOI 10.1109/CVPRW.2009.5206848
[7]  
GOSLGNG P., 2003, Australasian Chiropractic Osteopathy, V11, P65
[8]   Optical coherence tomography: a reliable alternative to invasive histological assessment of acute wound healing in human skin? [J].
Greaves, N. S. ;
Benatar, B. ;
Whiteside, S. ;
Alonso-Rasgado, T. ;
Baguneid, M. ;
Bayat, A. .
BRITISH JOURNAL OF DERMATOLOGY, 2014, 170 (04) :840-850
[9]  
He, P IEEE C COMP VIS PA, P770, DOI DOI 10.1109/CVPR.2016.90
[10]   Rethinking ImageNet Pre-training [J].
He, Kaiming ;
Girshick, Ross ;
Dollar, Piotr .
2019 IEEE/CVF INTERNATIONAL CONFERENCE ON COMPUTER VISION (ICCV 2019), 2019, :4917-4926