Classification of marginally trapped Lagrangian surfaces in Lorentzian complex space forms

被引:24
作者
Chen, Bang-Yen [1 ]
Dillen, Franki
机构
[1] Michigan State Univ, Dept Math, E Lansing, MI 48824 USA
[2] Katholieke Univ Leuven, Dept Wiskunde, B-3001 Heverlee, Belgium
关键词
D O I
10.1063/1.2424553
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
A Lagrangian surface in a Lorentzian Kahler surface is called marginally trapped if its mean curvature vector is lightlike at each point. In this paper we classify marginally trapped Lagrangian surfaces in Lorentzian complex space forms. Our main results state that there exist three families of marginally trapped Lagrangian surfaces in C-1(2), nine families in CP12, and nine families in CH12. Conversely, all marginally trapped Lagrangian surfaces in Lorentzian complex space forms are obtained from these 21 families. (c) 2007 American Institute of Physics.
引用
收藏
页数:23
相关论文
共 17 条
[1]  
Chen B. Y., 1984, SERIES PURE MATH, V1
[2]  
Chen B. Y., 1973, GEOMETRY SUBMANIFOLD
[3]   Maslovian Lagrangian surfaces of constant curvature in complex projective or complex hyperbolic planes [J].
Chen, BY .
MATHEMATISCHE NACHRICHTEN, 2005, 278 (11) :1242-1281
[4]   Lagrangian minimal isometric immersions of a Lorentzian real space form into a Lorentzian complex space form [J].
Chen, BY ;
Vrancken, L .
TOHOKU MATHEMATICAL JOURNAL, 2002, 54 (01) :121-143
[5]   Representation of flat Lagrangian H-umbilical submanifolds in complex Euclidean spaces [J].
Chen, BY .
TOHOKU MATHEMATICAL JOURNAL, 1999, 51 (01) :13-20
[6]  
CHEN BY, UNPUB CLASSIFICATION
[7]   The instability of naked singularities in the gravitational collapse of a scaler field [J].
Christodoulou, D .
ANNALS OF MATHEMATICS, 1999, 149 (01) :183-217
[8]  
Hawking S W, 1973, LARGE SCALE STRUCTUR, P68
[9]   SINGULARITIES OF GRAVITATIONAL COLLAPSE AND COSMOLOGY [J].
HAWKING, SW ;
PENROSE, R .
PROCEEDINGS OF THE ROYAL SOCIETY OF LONDON SERIES A-MATHEMATICAL AND PHYSICAL SCIENCES, 1970, 314 (1519) :529-&
[10]   Minimal Lagrangian submanifolds of Lorentzian complex space forms with constant sectional curvature [J].
Kriele, M ;
Vrancken, L .
ARCHIV DER MATHEMATIK, 1999, 72 (03) :223-232