Ground states for a nonhomogeneous elliptic system involving Hardy-Sobolev critical exponents

被引:1
作者
Guo, Zhenyu [1 ,2 ]
机构
[1] Liaoning Shihua Univ, Sch Sci, Fushun 113001, Peoples R China
[2] Tsinghua Univ, Dept Math Sci, Beijing 100084, Peoples R China
关键词
Ground state; Nehari manifold; Hardy-Sobolev critical exponent; SCHRODINGER-EQUATIONS; POTENTIALS; EXISTENCE; BOUNDARY; PDES;
D O I
10.1002/mana.201500348
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
This paper studies the following nonhomogeneous elliptic system involving Hardy-Sobolev critical exponents {Delta u + lambda(1) u(p-1)/vertical bar x vertical bar(s) + mu(1) u(2)*((s1)-1)/vertical bar x vertical bar(s1) + alpha gamma/2*(s(2)) u(alpha-1)v(beta)/vertical bar x vertical bar(s2) = 0 in Omega, Delta v + lambda(2) v(p-1)/vertical bar x vertical bar(s) + mu(2) v(2)*((s1)-1)/vertical bar x vertical bar(s1) + beta gamma/2*(s(2)) u(alpha)v(beta-1)/vertical bar x vertical bar(s2) = 0 in Omega, u >= 0, v >= 0 in Omega, u = 0, v = 0 on partial derivative Omega, where lambda(1), lambda(2), mu(1), mu(2), gamma > 0, 2 < p < 2*(s) := 2(N-s)/N-2, 0 <= s < 2, 0 < s(1), s(2) < 2, alpha, beta > 1, alpha + beta = 2*(s(2)), Omega is a C-1 open bounded domain in R-N containing the origin, and N >= 4. The existence result of positive ground state solution is established. (C) 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim
引用
收藏
页码:1053 / 1065
页数:13
相关论文
共 20 条
[1]  
Ambrosetti A., 1973, Journal of Functional Analysis, V14, P349, DOI 10.1016/0022-1236(73)90051-7
[2]  
[Anonymous], 2015, PREPRINT
[3]   POSITIVE SOLUTIONS OF NON-LINEAR ELLIPTIC-EQUATIONS INVOLVING CRITICAL SOBOLEV EXPONENTS [J].
BREZIS, H ;
NIRENBERG, L .
COMMUNICATIONS ON PURE AND APPLIED MATHEMATICS, 1983, 36 (04) :437-477
[4]   A RELATION BETWEEN POINTWISE CONVERGENCE OF FUNCTIONS AND CONVERGENCE OF FUNCTIONALS [J].
BREZIS, H ;
LIEB, E .
PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 1983, 88 (03) :486-490
[5]   Solutions for semilinear elliptic equations with critical exponents and Hardy potential [J].
Cao, DM ;
Han, PG .
JOURNAL OF DIFFERENTIAL EQUATIONS, 2004, 205 (02) :521-537
[6]   On some nonlinear elliptic PDEs with Sobolev-Hardy critical exponents and a Li-Lin open problem [J].
Cerami, G. ;
Zhong, X. ;
Zou, W. .
CALCULUS OF VARIATIONS AND PARTIAL DIFFERENTIAL EQUATIONS, 2015, 54 (02) :1793-1829
[7]  
Chen ZJ, 2015, T AM MATH SOC, V367, P3599
[8]   Positive least energy solutions and phase separation for coupled Schrodinger equations with critical exponent: higher dimensional case [J].
Chen, Zhijie ;
Zou, Wenming .
CALCULUS OF VARIATIONS AND PARTIAL DIFFERENTIAL EQUATIONS, 2015, 52 (1-2) :423-467
[9]   On an elliptic problem with critical exponent and Hardy potential [J].
Chen, Zhijie ;
Zou, Wenming .
JOURNAL OF DIFFERENTIAL EQUATIONS, 2012, 252 (02) :969-987
[10]   Elliptic equations with multi-singular inverse-square potentials and critical nonlinearity [J].
Felli, V ;
Terracini, S .
COMMUNICATIONS IN PARTIAL DIFFERENTIAL EQUATIONS, 2006, 31 (03) :469-495