Axial squeeze strengthen effect on rotary magneto-rheological damper

被引:4
|
作者
Dong, Xiaomin [1 ]
Duan, Chi [1 ]
Yu, Jianqiang [1 ]
机构
[1] Chongqing Univ, State Key Lab Mech Transmiss, Chongqing 400044, Peoples R China
关键词
magneto-rheological fluid; axial squeeze strengthen effect; rotary MR damper; MAGNETORHEOLOGICAL FLUIDS;
D O I
10.1088/1361-665X/aa6a92
中图分类号
TH7 [仪器、仪表];
学科分类号
0804 ; 080401 ; 081102 ;
摘要
Pressure is an important factor to influence the performance of an magneto-rheological (MR) apparatus. The effect of the axial squeeze strengthen effect on rotary MR damper is investigated theoretically and experimentally in this study. First, a theoretical analysis in a microscopic view is proposed. It indicates that a concentrated increment of iron particle content in the working gap results in the effect. Then, a pressure-controlled rotary MR damper with the axial squeeze strengthen effect is designed, manufactured and tested. The results show that the axial squeeze strengthen effect on rotary MR damper is remarkable for the damper with lower particle content in MR fluids. In addition, there is an optimal pressure to obtain the maximum axial squeeze strengthen effect on the rotary MR damper.
引用
收藏
页数:9
相关论文
共 50 条
  • [1] Analysis of a Compact Squeeze Film Damper with Magneto-Rheological Fluid
    Singh, Rahul K.
    Tiwari, Mayank
    Saksena, Anpeksh A.
    Srivastava, Aman
    DEFENCE SCIENCE JOURNAL, 2020, 70 (02) : 122 - 130
  • [2] Unbalance response control of rotor by magneto-rheological fluid based squeeze film damper
    Kim, Keun-Joo
    Lee, Chong-Won
    Proceedings of the ASME International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, Vol 1, Pts A-C, 2005, : 1053 - 1060
  • [3] Study on operational temperature of magneto-rheological fluid and design dimensions of magneto-rheological damper for optimization
    Kariganaur, Ashok Kumar
    Kumar, Hemantha
    Arun, M.
    ENGINEERING RESEARCH EXPRESS, 2024, 6 (02):
  • [4] Analysis of magnetic flux in magneto-rheological damper
    Purandare, Snehal
    Zambare, Hrishikesh
    Razban, Ali
    JOURNAL OF PHYSICS COMMUNICATIONS, 2019, 3 (07):
  • [5] Dynamic characteristics of magneto-rheological fluid damper
    Sunakoda, K
    Sodeyama, H
    Iwata, N
    Fujitani, H
    Soda, S
    SMART STRUCTURES AND MATERIALS 2000: DAMPING AND ISOLATION, 2000, 3989 : 194 - 203
  • [6] Study on Design Method for Magneto-rheological Fluid Damper Based on Squeeze Mode and Experimental Tests
    Liao, C. R.
    Fu, L. J.
    Yang, Y.
    ADVANCES IN MECHANICAL DESIGN, PTS 1 AND 2, 2011, 199-200 : 97 - 101
  • [7] Dynamic performance evaluation of magneto-rheological damper
    Fujitani, H
    Sodeyama, H
    Hata, K
    Iwata, N
    Komatsu, Y
    Sunakoda, K
    Soda, S
    ADVANCES IN STRUCTURAL DYNAMICS, VOLS I & II, 2000, 10 : 319 - 326
  • [8] A rotary magneto-rheological torque converter for tension regulation
    Li Gang
    Du Cheng-bin
    Feng Yong
    ADVANCES IN MECHANICAL ENGINEERING, 2018, 10 (11):
  • [9] A Rheological Model for Magneto-rheological Fluids
    Susan-Resiga, Daniela
    JOURNAL OF INTELLIGENT MATERIAL SYSTEMS AND STRUCTURES, 2009, 20 (08) : 1001 - 1010
  • [10] Transmission impedance extraction method applied in magneto-rheological damper
    Chen, Yushou
    Zhou, Mengxia
    Geng, Lu
    Yan, Wei
    Zhao, Yang
    Wang, Enrong
    INTERNATIONAL JOURNAL OF APPLIED ELECTROMAGNETICS AND MECHANICS, 2018, 56 (02) : 317 - 327