A monotonic finite-difference scheme for a parabolic problem with nonlocal conditions

被引:43
作者
Ciegis, R [1 ]
Stikonas, A [1 ]
Stikoniene, O [1 ]
Suboc, O [1 ]
机构
[1] Vilnius Tech Univ, Inst Math & Comp Sci, Vilnius, Lithuania
关键词
Differential Equation; Partial Differential Equation; Ordinary Differential Equation; Functional Equation; Parabolic Problem;
D O I
10.1023/A:1021167932414
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
[No abstract available]
引用
收藏
页码:1027 / 1037
页数:11
相关论文
共 11 条
[1]  
AMOSOV AA, 1986, VYCHISL PROTSESSY SI, V4, P192
[2]  
[Anonymous], 1987, DIFFER EQU
[3]  
[Anonymous], MATH MODEL ANAL
[4]  
[Anonymous], 1989, TEORIYA RAZNOSTNYKH
[5]  
BITSADZE AV, 1969, DOKL AKAD NAUK SSSR+, V185, P739
[6]   FINITE-DIFFERENCE METHODS FOR A NONLOCAL BOUNDARY-VALUE PROBLEM FOR THE HEAT-EQUATION [J].
EKOLIN, G .
BIT, 1991, 31 (02) :245-261
[7]   Galerkin methods for a semilinear parabolic problem with nonlocal boundary conditions [J].
Fairweather, G ;
LopezMarcos, JC .
ADVANCES IN COMPUTATIONAL MATHEMATICS, 1996, 6 (3-4) :243-262
[8]  
Goolin A.V., 2001, COMPUT METHODS APPL, V1, P62, DOI 10.2478/cmam-2001-0004
[9]  
Matus A.P., 2001, MATH MODEL ANAL, V6, P289
[10]  
Samarskii A.A., 1989, Numerical Methods